【深耕 Python】Data Science with Python 数据科学(17)Scikit-learn机器学习(二)

2024-05-02 07:52

本文主要是介绍【深耕 Python】Data Science with Python 数据科学(17)Scikit-learn机器学习(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文一览:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

【深耕 Python】Data Science with Python 数据科学(8)pandas数据结构:Series和DataFrame

【深耕 Python】Data Science with Python 数据科学(9)书361页练习题

【深耕 Python】Data Science with Python 数据科学(10)pandas 数据处理(一)

【深耕 Python】Data Science with Python 数据科学(11)pandas 数据处理(二)

【深耕 Python】Data Science with Python 数据科学(12)pandas 数据处理(三)

【深耕 Python】Data Science with Python 数据科学(13)pandas 数据处理(四):书377页练习题

【深耕 Python】Data Science with Python 数据科学(14)pandas 数据处理(五):泰坦尼克号亡魂 Perished Souls on “RMS Titanic”

【深耕 Python】Data Science with Python 数据科学(15)pandas 数据处理(六):书385页练习题

【深耕 Python】Data Science with Python 数据科学(16)Scikit-learn机器学习(一)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

本期博客为Scikit-learn机器学习的最入门之介绍,更深入的理解和应用请待后续更新。本期内容开始之前,首先分享一则机器学习相关的名人名言。

名人名言
【匈牙利】约翰·冯·诺伊曼,计算科学之父 John von Neumann 1903-1957
在这里插入图片描述

“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.”
“给我四个参数,我可以拟合出一头大象;给我五个参数,我可以让他甩动他的象鼻。”

一、读取数据表格

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltURL = "https://learnenough.s3.amazonaws.com/titanic.csv"
titanic = pd.read_csv(URL)

二、导入机器学习模型

Scikit-learn提供的机器学习模型(部分,附介绍链接):

逻辑斯蒂回归 Logistic Regression

朴素贝叶斯 Naive Bayes

感知机 Perceptron

决策树 Decision Tree

随机森林 Random Forest

导入上述机器学习模型:

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

三、数据预处理

将除了舱级Pclass性别Sex年龄Age生还Survived之外的列全部去除:

dropped_columns = ["PassengerId", "Name", "Cabin", "Embarked", "SibSp", "Parch", "Ticket", "Fare"]
for column in dropped_columns:titanic = titanic.drop(column, axis=1)

然后,将剩余列中的NaNNaT值去除:

for column in ["Age", "Sex", "Pclass"]:titanic = titanic[titanic[column].notna()]

还需将分类变量(Categorical Variable),比如性别,映射为数值变量(Numerical Variable):

sexes = {"male": 0, "female": 1}
titanic["Sex"] = titanic["Sex"].map(sexes)

准备自变量和因变量:

X = titanic.drop("Survived", axis=1)
Y = titanic["Survived"]

观察自变量和因变量的数据结构:

print(X.head(), "\n----\n")
print(Y.head(), "\n----\n")

程序输出:

# 3个自变量Pclass  Sex   Age
0       3    0  22.0
1       1    1  38.0
2       3    1  26.0
3       1    1  35.0
4       3    0  35.0 
----# 因变量
0    0
1    1
2    1
3    1
4    0
Name: Survived, dtype: int64 
----

接下来,将原数据划分为训练集和测试集,需导入 train_test_split() 方法:

from sklearn.model_selection import train_test_split(X_train, X_test, Y_train, Y_test) = train_test_split(X, Y, random_state=1)

四、定义、训练和评估模型

逻辑斯蒂回归模型

logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
accuracy_logreg = logreg.score(X_test, Y_test)

(高斯)朴素贝叶斯模型

naive_bayes = GaussianNB()
naive_bayes.fit(X_train, Y_train)
accuracy_naive_bayes = naive_bayes.score(X_test, Y_test)

感知机模型

perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
accuracy_perceptron = perceptron.score(X_test, Y_test)

决策树模型

decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
accuracy_decision_tree = decision_tree.score(X_test, Y_test)

随机森林模型

random_forest = RandomForestClassifier()
random_forest.fit(X_train, Y_train)
accuracy_random_forest = random_forest.score(X_test, Y_test)

模型评估:

results = pd.DataFrame({"Model": ["Logistic Regression", "Naive Bayes", "Perceptron","Decision Tree", "Random Forest"],"Score": [accuracy_logreg, accuracy_naive_bayes, accuracy_perceptron,accuracy_decision_tree, accuracy_random_forest]
})result_df = results.sort_values(by="Score", ascending=False)
result_df = result_df.set_index("Score")
print(result_df)

模型准确率:

# 准确率        模型               
Score           Model                        
0.854749        Decision Tree
0.854749        Random Forest
0.787709  Logistic Regression
0.770950          Naive Bayes
0.743017           Perceptron

对随机森林模型中的3个因素的权重进行分析并绘制柱状图:

print(random_forest.feature_importances_)
print(X_train.columns)
fig, ax = plt.subplots()
ax.bar(X_train.columns, random_forest.feature_importances_)
plt.title("Factor Importance of Random Forest")
plt.ylabel("Importance")
plt.grid()
plt.show()

程序输出:

[0.17858357 0.35377705 0.46763938]
Index(['Pclass', 'Sex', 'Age'], dtype='object')

在这里插入图片描述

五、交叉验证

对随机森林模型进行K折交叉验证(默认值为K=5):

from sklearn.model_selection import cross_val_scorerandom_forest = RandomForestClassifier(random_state=1)
scores = cross_val_score(random_forest, X, Y)
print(scores)
print(scores.mean())
print(scores.std())

程序输出:

[0.75524476 0.8041958  0.82517483 0.83216783 0.83098592]  # 5次交叉验证
0.8095538264552349  # 平均准确率
0.028958338744358988  # 标准差

参考文献 Reference

《Learn Enough Python to be Dangerous——Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

这篇关于【深耕 Python】Data Science with Python 数据科学(17)Scikit-learn机器学习(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953753

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取