[笔记][中国大学mooc][程序设计与算法(二) 算法基础][二分算法] 农夫和奶牛

本文主要是介绍[笔记][中国大学mooc][程序设计与算法(二) 算法基础][二分算法] 农夫和奶牛,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

在这里插入图片描述

分析

本题的解空间是 [ 1 , ( 1 0 9 + 1 ) − 1 C − 1 ] ⋂ Z + [1,\frac{(10^9+1)-1}{C-1}]\bigcap{Z^+} [1,C1(109+1)1]Z+(这里老师在课上讲的区间是 [ 1 , 1 0 9 C ] [1,\frac{10^9}{C}] [1,C109],考虑有两头牛,牛舍在 0 0 0 1 0 9 10^9 109的位置都存在,那么这个最大距离就应当是 1 0 9 − 0 1 \frac{10^9-0}{1} 11090,所以这里可能有点问题,但是不影响老师所讲的二分法核心思想)另外,考虑到可以获取到最左边和左右边个隔间的位置,所以牛的最大间距就是 [ 1 , b i g g e s t P o s i t i o n − s m a l l e s t P o s i t i o n C − 1 ] ⋂ Z + [1,\frac{biggestPosition-smallest Position}{C-1}]\bigcap{Z^+} [1,C1biggestPositionsmallestPosition]Z+,解空间进一步缩小
本题即是在上述解空间中进行二分查找。

本题目与[笔记][中国大学mooc][程序设计与算法(二) 算法基础][二分算法] 派题目十分相似(核心都是二分法),但是本题目在验证某数是否属于解空间的时候,需要按顺序遍历整个隔间位置的序列。
而且本题目的解空间是离散的,在二分法中可能会出现很多问题:

  1. 递归函数必须强制收缩左右边界,意思是在验证了 ⌊ ( L + R ) 2 ⌋ \lfloor\frac{(L+R)}{2}\rfloor 2(L+R)的可行性后,如果可行需要将左边界收缩到 ⌊ ( L + R ) 2 ⌋ + 1 \lfloor\frac{(L+R)}{2}\rfloor+1 2(L+R)+1的位置,注意同时需要记住这个 ⌊ ( L + R ) 2 ⌋ \lfloor\frac{(L+R)}{2}\rfloor 2(L+R);否则将右边界收缩至 ⌊ ( L + R ) 2 ⌋ − 1 \lfloor\frac{(L+R)}{2}\rfloor-1 2(L+R)1。原因是如果解在 [ a , a + 1 ] [a,a+1] [a,a+1] ⌊ ( L + R ) 2 ⌋ = a \lfloor\frac{(L+R)}{2}\rfloor=a 2(L+R)=a,如果不主动收缩左边界,下一次调用区间是不会收缩的,产生死循环。
  2. 递归函数在 [ L , R ] [L,R] [L,R]中找不到解的情况(比如上一次调用递归函数的值已经是正确的了,如果继续验证是否有更大的解,就会发生找不到解的情况),所以需要先验证左边界 L L L是否在解空间内。

代码

#include<stdio.h>
#define MAXN 100000
long long N, C;//C=#cows N=#stalls
long long positionOfStalls[MAXN];
//判断该距离是否能把牛全部装下
bool IsCurrentDistanceWorks(long long testDistance){long long lastCowPosition = positionOfStalls[0];long long restCows = C-1;for(int cnt=0; cnt<N; cnt++){if(positionOfStalls[cnt]-lastCowPosition >= testDistance){restCows--;lastCowPosition = positionOfStalls[cnt];}if(restCows == 0)return true;}return false;
}
//找到[L,R]内的最大间隔
long long MinimizeLargestDistance(long long L, long long R){if(IsCurrentDistanceWorks(L)){if(L>=R)return L;}elsereturn 0;if(IsCurrentDistanceWorks((L+R)/2)){long long evenLargerDistance = MinimizeLargestDistance((L+R)/2+1, R);return evenLargerDistance > (L+R)/2 ? evenLargerDistance : (L+R)/2;}elsereturn MinimizeLargestDistance(L, (L+R)/2-1);
}
//归并排序
void Merge(long long ptr_head1, long long ptr_head2, long long ptr_tail){long long ptr1 = ptr_head1, ptr2 = ptr_head2, ptr=0;long long tempSquenceForMerge[ptr_tail-ptr_head1+1];while(ptr1<ptr_head2&&ptr2<=ptr_tail)tempSquenceForMerge[ptr++] = positionOfStalls[ptr1]<positionOfStalls[ptr2]?positionOfStalls[ptr1++]:positionOfStalls[ptr2++];while(ptr1<ptr_head2)tempSquenceForMerge[ptr++] = positionOfStalls[ptr1++];while(ptr2<=ptr_tail)tempSquenceForMerge[ptr++] = positionOfStalls[ptr2++];ptr=0;for(long long cnt=ptr_head1; cnt<=ptr_tail; cnt++)positionOfStalls[cnt]=tempSquenceForMerge[ptr++];
}
void MergeSort(long long ptr_head, long long ptr_tail){if(ptr_head >= ptr_tail) return;MergeSort(ptr_head, (ptr_head+ptr_tail)/2);MergeSort((ptr_head+ptr_tail)/2+1, ptr_tail);Merge(ptr_head, (ptr_head+ptr_tail)/2+1, ptr_tail);
}
//void QuickSort(long long ptr_head, long long ptr_tail){
//	if(ptr_head>=ptr_tail)
//		return;
//	long long ptr1 = ptr_head, ptr2 = ptr_tail;
//	long long timeOfExchanges = 0;
//	long long tempForExchange;
//	while(ptr1 < ptr2){
//		if(positionOfStalls[ptr1] > positionOfStalls[ptr2]){
//			tempForExchange = positionOfStalls[ptr1];
//			positionOfStalls[ptr1] = positionOfStalls[ptr2];
//			positionOfStalls[ptr2] = tempForExchange;
//			timeOfExchanges++;
//		}
//		if(timeOfExchanges%2)
//			ptr1++;
//		else
//			ptr2--;
//	}
//	QuickSort(ptr_head, ptr1-1);
//	QuickSort(ptr1+1, ptr_tail);
//}
int main(){freopen("in.txt", "r", stdin);scanf("%d %d", &N, &C);for(int cnt=0; cnt<N; cnt++)scanf("%d", positionOfStalls+cnt);MergeSort(0, N-1);printf("%d", MinimizeLargestDistance(1, (positionOfStalls[N-1]-positionOfStalls[0])/(C-1)));return 0;
} 

出现的问题

在第一次提交的时候,代码中使用的是快速排序,测试样例中有一个例子是77777个隔间位置,而隔间位置都是从小到大输入的。此时如果使用快速排序,理论上会产生77777次递归调用,这肯定会导致溢出。所以改用归并排序后,情况得以解决

这篇关于[笔记][中国大学mooc][程序设计与算法(二) 算法基础][二分算法] 农夫和奶牛的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953609

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门