【高质量】2024五一数学建模C题保奖思路+代码(后续会更新)

本文主要是介绍【高质量】2024五一数学建模C题保奖思路+代码(后续会更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你的点赞收藏是我后续更新的最大动力!

一定要点击文末的卡片,那是获取资料的入口!

你是否在寻找数学建模比赛的突破点?

作为经验丰富的数学建模团队,我们将为你带来2024 年五一数学建模(C题)的全面解析包。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。

问题1:如图1,已知现场工作面的部分电磁辐射和声发射信号中存在大量干扰信号,有可能是工作面的其他作业或设备干扰等因素引起,这对后期的电磁辐射和声发射信号处理造成了一定的影响。应用附件1和2中的数据,完成以下问题。

(1.1) 建立数学模型,对存在干扰的电磁辐射和声发射信号进行分析,分别给出电磁辐射和声发射中的干扰信号数据的特征(不少于3个)。

(1.2) 利用问题(1.1)中得到的特征,建立数学模型,对2022年5月1日-2022年5月30日的电磁辐射和2022年4月1日-2022年5月30日及2022年10月10日-2022年11月10日声发射信号中的干扰信号所在的时间区间进行识别,分别给出电磁辐射和声发射最早发生的5个干扰信号所在的区间,完成表1和表2。

对于提出的数学建模问题,我们需要构建一个模型来分析受干扰的电磁辐射(EMR)和声发射(AE)信号,进而确定和记录特定时间段内的干扰信号。下面是针对问题1.1和1.2的详细分析和数学建模方法。

问题1.1 分析与建模思路

首先,需要从提供的数据中辨识出干扰信号的特征。根据问题描述和附加图表,干扰信号可能因其他操作或机械引起,这些干扰在信号中表现为异常波动或噪声。以下是构建模型的步骤:

特征识别

  1. 信号振幅突变:干扰通常导致信号振幅异常增高或降低。
  2. 频率变化:干扰可能引起信号的频率分布与正常工作时不同。
  3. 时间序列的非连续性:由于干扰的非周期性,信号的时间序列可能出现非连续性。

数学模型构建

可以使用统计学方法来分析和识别干扰特征: - 振幅分析:计算信号的平均振幅和标准差,通过比较实时数据与历史数据来识别异常。 Mean(X)=1n∑i=1nxi,SD(X)=1n∑i=1n(xi−Mean(X))2 \text{Mean}(X) = \frac{1}{n}\sum_{i=1}^{n}x_i, \quad \text{SD}(X) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i - \text{Mean}(X))^2} - 频谱分析:利用快速傅里叶变换(FFT)分析信号频率组成,标识出频率的异常变化。 Xk=∑n=0N−1xne−2πiNkn,k=0,...,N−1 X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N} kn}, \quad k = 0, ..., N-1 - 时间序列分析:应用时间序列分析技术,如自回归模型(AR),来预测并检测信号的非连续性。 Xt=c+∑i=1pϕiXt−i+ϵt X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t - 信号振幅的平均值和标准差: 平均振幅平均振幅=1n∑i=1nxi \text{平均振幅} = \frac{1}{n} \sum_{i=1}^{n} x_i 标准差平均振幅标准差=1n∑i=1n(xi−平均振幅)2 \text{标准差} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \text{平均振幅})^2} - 快速傅里叶变换(FFT): X(k)=∑n=0N−1x(n)e−j2πNkn X(k) = \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi}{N} kn} - 自回归模型(AR): Xt=c+∑i=1pϕiXt−i+ϵt X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t

首先,我们需要从提供的附件中读取并分析电磁辐射(EMR)和声发射(AE)信号数据。数据以CSV格式存储,包括时间戳和相应的信号强度值。数据预处理步骤包括清洗数据,去除噪声和异常值,填补缺失数据。

问题1.2 应用模型

特征提取

为了识别干扰信号,我们需要提取与干扰相关的特征。基于问题描述,可以关注以下几个方面的特征:

  • 信号振幅的异常变化:通过计算窗口内信号的平均振幅和标准差,识别出那些超过平均水平一定阈值的异常点。
  • 信号的频率成分变化:使用快速傅里叶变换(FFT)来分析信号在不同时间窗口内的频率成分,识别出与正常模式不符的频率变化。
  • 时间序列的突变点检测:通过时间序列分析,如自回归模型(AR)或其他统计检测方法,来检测信号中的突变点。

干扰信号的检测

基于上述特征,构建模型来检测干扰信号。这可以通过设置特定的逻辑条件来实现,例如,当信号的振幅超过平均振幅加上两倍标准差时,或者当信号的频率成分突然变化时,认为检测到干扰。

记录干扰时间段

根据检测到的干扰信号,记录下发生干扰的时间段。这些数据将被用来填充所要求的表格。

应用上述模型来分析2022年5月1日至5月30日记录的EMR数据,以及2022年4月1日至5月30日及2022年10月10日至11月10日记录的AE数据。

步骤

  1. 数据预处理:对EMR和AE数据进行清洗,剔除明显的错误或缺失数据。
  2. 特征应用:应用问题1.1中定义的数学模型和特征,对数据进行扫描,识别出干扰信号。
  3. 时间段标定:标定初次出现的五次干扰信号的时间段。
import numpy as np
import pandas as pd
from scipy.fft import fft# 假设data为载入的信号数据,包含时间戳和信号强度
def detect_interference(data):results = []window_size = 30  # 定义检测窗口大小threshold = 3     # 定义异常阈值for i in range(len(data) - window_size + 1):window = data[i:i+window_size]mean = np.mean(window['signal'])std = np.std(window['signal'])# 检测振幅异常if any(abs(signal - mean) > threshold * std for signal in window['signal']):start_time = window['time'].iloc[0]end_time = window['time'].iloc[-1]results.append((start_time, end_time))if len(results) == 5:breakreturn results# 示例数据加载与处理
emr_data = pd.read_csv('emr_data.csv')
ae_data = pd.read_csv('ae_data.csv')# 应用检测函数
emr_interferences = detect_interference(emr_data)
ae_interferences = detect_interference(ae_data)# 打印结果
print("EMR Interferences:", emr_interferences)
print("AE Interferences:", ae_interferences)
import pandas as pd
import numpy as np
from scipy.fft import fft
from statsmodels.tsa.ar_model import AutoReg
import matplotlib.pyplot as plt# 读取数据
emr_data = pd.read_csv('emr_data.csv')
ae_data = pd.read_csv('ae_data.csv')# 数据预处理
emr_data.dropna(inplace=True)
ae_data.dropna(inplace=True)# 特征提取函数
def extract_features(data):window_size = 50  # 设定分析窗口大小threshold = 3     # 异常阈值features = []for start in range(0, len(data) - window_size, window_size):window = data.iloc[start:start + window_size]mean = window['signal'].mean()std = window['signal'].std()# 检测异常振幅if any(abs(window['signal'] - mean) > mean + threshold * std):features.append((data.iloc[start]['timestamp'], data.iloc[start + window_size]['timestamp']))return features# 应用特征提取
emr_features = extract_features(emr_data)
ae_features = extract_features(ae_data)# 输出结果
print("EMR干扰时间段:", emr_features[:5])  # 只显示前5个结果
print("AE干扰时间段:", ae_features[:5])  # 只显示前5个结果

填充表格

我们将根据代码运行结果(完整代码可以和我交流得到)如下填充表格:

表1:EMR信号的时间间隔

NumberStart of Time IntervalEnd of Time Interval
1根据 emr_interferences[0][0]根据 emr_interferences[0][1]
2根据 emr_interferences[1][0]根据 emr_interferences[1][1]
3根据 emr_interferences[2][0]根据 emr_interferences[2][1]
4根据 emr_interferences[3][0]根据 emr_interferences[3][1]
5根据 emr_interferences[4][0]根据 emr_interferences[4][1]

表2:AE信号的时间间隔

NumberStart of Time IntervalEnd of Time Interval
1根据 ae_interferences[0][0]根据 ae_interferences[0][1]
2根据 ae_interferences[1][0]根据 ae_interferences[1][1]
3根据 ae_interferences[2][0]根据 ae_interferences[2][1]
4根据 ae_interferences[3][0]根据 ae_interferences[3][1]
5根据 ae_interferences[4][0]根据 ae_interferences[4][1]

其余题目正在抓紧编写!随时更新!

这篇关于【高质量】2024五一数学建模C题保奖思路+代码(后续会更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952756

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服