设计模式-03 设计模式-依赖倒转原则案例分析

2024-05-01 18:28

本文主要是介绍设计模式-03 设计模式-依赖倒转原则案例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


设计模式-03 设计模式-依赖倒转原则案例分析

目录

设计模式-02 设计模式-依赖倒转原则案例分析

1.定义

2.内涵

3.案例对比

4.注意事项

5.最佳实践

6.总结


1.定义

依赖倒转原则(Dependency Inversion Principle,简称DIP)高层级的模块不能依赖底层级模块的,两种层级的模块应该依赖抽象,抽象层不能依赖具体实现层,具体实现应该依赖抽象

通俗来说,DIP 意味着:

客户端代码(高层模块)不应该直接依赖于具体实现(低层模块)。
相反,客户端代码应该依赖于一个抽象,而抽象再依赖于具体实现。

+--------------+|  客户端代码  |+--------------+|V+--------------+|    抽象类    |+--------------+|V+--------------+| 具体实现类 |+--------------+

说明:

  • 客户端代码(高层模块)依赖于抽象类,而不是具体的实现类。
  • 抽象类定义了客户端代码所需的行为,而具体实现类提供了这些行为的具体实现。
  • 客户端代码通过依赖注入接收其依赖项(抽象类)。
  • 通过使用 DIP,客户端代码与具体实现类之间的耦合最小化,从而提高了代码的灵活性、可测试性和可维护性。

                   

2.内涵

DIP 的定义出发点是:

软件的灵活性:当依赖关系是固定的时,很难在不影响其他模块的情况下修改软件。
软件的可测试性:当客户端代码直接依赖于具体实现时,很难对客户端代码进行单元测试。

3.案例对比

错误的设计,经常是依赖与具体的实现。而不是依赖与接口层。以下就具体案例进行的举例说明。


bad 设计

#include <iostream>
#include <cstdio>
#include <vector>
#include <fstream>
#include <tuple>
#include <string>using namespace std;enum class Relationship{parent,child,sibling,
};struct Person{string name;
};struct Relationships  // 底层模块
{vector<tuple<Person, Relationship, Person>> relations;void add_parent_add_child(const Person& parent, const Person& child){relations.push_back({parent, Relationship::parent, child});relations.push_back({child, Relationship::child, parent});}};struct Research  // 上层模块,依赖与底层的具体实现,而不是抽象接口,违反了依赖倒转原则
{Research(Relationships& relationships){auto& relations = relationships.relations;for(auto& [first, rel, second]: relations){if(first.name == "Hohn"  && rel == Relationship::parent){cout<<"Hohn has child :"<< second.name<< endl;}}}
};int main() {Person parent{"Hohn"};Person child1{"Dhris"},child2{"Watt"};Relationships relationships;relationships.add_parent_add_child(parent,child1);relationships.add_parent_add_child(parent,child2);Research _(relationships);return 0;
}

好的设计

#include <iostream>
#include <cstdio>
#include <vector>
#include <fstream>
#include <tuple>
#include <string>using namespace std;enum class Relationship{parent,child,sibling,
};struct Person{string name;
};struct RelationshipBrowser{virtual vector<Person> find_all_children_of(const string& name) = 0;
};struct Relationships :RelationshipBrowser // 底层模块
{vector<tuple<Person, Relationship, Person>> relations;void add_parent_add_child(const Person& parent, const Person& child){relations.push_back({parent, Relationship::parent, child});relations.push_back({child, Relationship::child, parent});}vector<Person> find_all_children_of(const string &name) override {vector<Person> result;for(auto&& [first,rel,second] : relations) {if(first.name == name && rel == Relationship::parent){result.push_back(second);}}return result;}};struct Research  // 上层模块不在依赖 Relationships ,而是依赖接口:RelationshipBrowser
{Research(RelationshipBrowser& browser){for(auto& child: browser.find_all_children_of("Hohn")){cout<<"Honh has child:"<< child.name<<endl;}}
//    Research(Relationships& relationships){
//        auto& relations = relationships.relations;
//        for(auto& [first, rel, second]: relations){
//            if(first.name == "Hohn"  && rel == Relationship::parent){
//                cout<<"Hohn has child :"<< second.name<< endl;
//            }
//        }
//    }
};int main() {Person parent{"Hohn"};Person child1{"Dhris"},child2{"Watt"};Relationships relationships;relationships.add_parent_add_child(parent,child1);relationships.add_parent_add_child(parent,child2);Research _(relationships);return 0;
}

两种设计思路输出结果一样,但是好的设计遵循了依赖倒转原则,代码更灵活

Honh has child:Dhris
Honh has child:Watt
4.注意事项


在具体开发中,应用依赖倒转原则(DIP)时需要注意以下几点:

  • 明确接口和实现之间的关系:确保接口定义了客户端代码所需的行为,而实现提供了这些行为的具体实现。
  • 使用抽象类或接口来定义抽象:避免使用具体类作为抽象,因为这会违反 DIP。
  • 通过依赖注入传递依赖项:使用依赖注入框架或手动将依赖项传递给客户端代码,而不是让客户端代码直接创建依赖项。
  • 避免循环依赖:确保依赖关系是单向的,即高层模块不依赖于低层模块,低层模块也不依赖于高层模块。
  • 考虑性能影响:在某些情况下,使用 DIP 可能会有轻微的性能开销,因此在应用 DIP 时需要权衡利弊。

5.最佳实践

DIP 有以下优点:

  • 提高代码的灵活性:通过使用抽象,我们可以轻松地更改具体实现,而无需修改客户端代码。
  • 提高代码的可测试性:通过使用抽象,我们可以对客户端代码进行单元测试,而无需依赖于具体实现。
  • 减少耦合:DIP 减少了客户端代码与具体实现之间的耦合,从而提高了代码的可维护性和可重用性。

6.总结

DIP 并不是万能的,在某些情况下可能会有一些局限性:
(1)轻微的性能开销:使用 DIP 可能会有轻微的性能开销,因为需要额外的开销来管理依赖项。
(2)过度抽象:过度抽象可能会使代码难以理解和维护。

过度抽象就会使得系统复杂化,不便于后续优化。

这篇关于设计模式-03 设计模式-依赖倒转原则案例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952365

相关文章

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Spring-DI依赖注入全过程

《Spring-DI依赖注入全过程》SpringDI是核心特性,通过容器管理依赖注入,降低耦合度,实现方式包括组件扫描、构造器/设值/字段注入、自动装配及作用域配置,支持灵活的依赖管理与生命周期控制,... 目录1. 什么是Spring DI?2.Spring如何做的DI3.总结1. 什么是Spring D

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按