《R语言与农业数据统计分析及建模》学习——logistic回归和poisson回归

本文主要是介绍《R语言与农业数据统计分析及建模》学习——logistic回归和poisson回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        普通线性回归通常用来描述变量y与x之间的线性关系:

y=\beta_0+\beta_1x_1+\cdot \cdot \cdot +\beta_kx_k+\varepsilon

        普通线性模型的假设是:响应变量y是连续型变量而且,服从正态分布分布。但在很多现实情况y并不是正态分布,如:二值问题/多分类问题,计次问题等,这些问题都是广义线性回归的范畴。广义线性回归用于解决因变量不是正态分布的问题。不同的广义线性回归类型,使用不同的连接函数,如下:

一、Logistic回归

        Logistic回归通过使用其固有的logistic函数估计概率,来衡量因变量与一个或多个资变啊领之间的关系。

        R中使用glm()函数拟合Logistic模型。调用格式如下:

glm(formula,family=family.generator,data=data.frame)

        该函数与普通线性回归函数lm()的差异是,需要设置分布族参数(family),即连接函数。

# 导入数据集
# 某省份农田的产量、降水、温度数据集
df<-read.csv("Logistic.csv")
# 展示数据集
str(df)
# 建立广义线性回归模型
# 因变量转为因子型
df$yield<-as.factor(df$yield)
log_glm<-glm(yield~rain+temp,data=df,family="binomial")
summary(log_glm)

# 用建立的模型进行预测
df_new<-data.frame(temp=c(16.5,18.9),rain=c(210,246))
y_pred<-predict(object=log_glm,newdata=df_new,type="response")
y_pred

        结果:预测值返回的是概率值。1的产量为y的概率为0.0023,2的产量为y的概率是0.9998

二、Poisson回归

        Poisson回归是假设y服从泊松分布,使用连接函数为log(λ),来衡量因变量与自变量之间的关系。

        R中使用glm()函数拟合Poisson模型。

# 导入数据
# 诱导仙客来开花的试验数据
df<-read.csv("Poisson.csv")
# 数据展示
head(df)
# Variety(品种:哑元1~4)
# Regimem(温度方案:哑元1~4)
# Day(白天温度:摄氏度)
# Night(夜间温度:摄氏度)
# Fertilizer(施肥水平:哑元1~4)
# Flowers(花的数目)# 将变量转为因子型
df$Variety<-as.factor(df$Variety)
df$Regimem<-as.factor(df$Regimem)
df$Fertilizer<-as.factor(df$Fertilizer)# 建立Poisson回归模型
fit<-glm(Flowers~Variety+Regimem+Fertilizer,family=poisson(link="log"),data=df)
# 对拟合结果进行卡方检验
anova(fit,test="Chisq")

        结果显示,fertilizer对flowers的影响不显著,下面尝试逐步回归对模型进行精简。

# 尝试逐步回归
fit_new<-step(fit)
# 比较逐步回归前后两个模型的结果
anova(fit,fit_new,test="Chisq")

       逐步回归剔除了Fertilizer变量,而且两个回归模型对比分析,二者之间差异不显著,所以可以使用逐步回归后的模型。

这篇关于《R语言与农业数据统计分析及建模》学习——logistic回归和poisson回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/950924

相关文章

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1