使用WGAN-GP算法构造精致人脸

2024-04-30 21:58

本文主要是介绍使用WGAN-GP算法构造精致人脸,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一节中可以看到基于”推土距离“的WGAN网络能够有效生成马图片,但是网络构造能力有所不足,因此导致有些图片模糊,甚至有些图片连马的轮廓都没有构建出来,本节我们改进WGAN网络,让它具有更强大的图像生成能力。

在介绍WGAN网络算法时提到,如果把网络看成一个函数,那么网络要想具备好的图像生成能力就必须满足1-Lipshitz条件,也就是要满足公式:

屏幕快照 2020-05-08 上午10.06.59.png

根据微积分的中值定理,如果函数f(x)可导,那么对任意x1,x2,可以找到位于(x1,x2)之间的x3,使得如下公式成了:

屏幕快照 2020-05-08 上午10.09.44.png

将它带入到上面公式就有:
屏幕快照 2020-05-08 上午10.10.42.png
这意味着如果函数满足1-Lipshitz条件,那么它必须在定义域内的没一点都可导,而且其求倒数后的结果绝对值不能大于1,这是一个相当苛刻的条件。所以上一节描述WGAN网络时,算法作者想不到好的办法让构造的网络满足这个条件,于是”拍脑袋“想出了将网络内部参数的数值全部剪切到(-1,1)之间,这也是造成网络生成图像质量不好的原因。

如果把函数f看做鉴别者网络,把输入的参数x看做是输入网络的图片,那么需要网络对所有输入图片求导后,所得结果求模后不大于1.这里需要进一步解释的是,由于图片含有多个像素点,如果把每一个像素点的值都看成是输入网络的参数,那么网络就是一个多元函数f(x1,x2,…xn),其中x1,x2…xn就是输入图片的像素值,对其求导就是分别针对x1,x2…xn求导,如果使用f1对应与针对x1求导后的结果,那么对所有x1,x2…xn求导后就会得到一个向量(f1,f2…fn),将该向量求模就对应第二个公式中的|f’(xn)|。

问题在于算法要求对所有输入图片都要满足求模后结果不大于1的要求,这点我们无法做到,因为我们不可能拿所有图像输入到网络。例如要让网络生成人脸,我们也不可能拿所有人脸图像来训练网络,因此就要做折中或妥协,我们拿一张真的人脸图像,然后用构造者网络生成一张假的人脸图像,在这两个人脸图像之间取一点,然后让网络对该点求导后结果的绝对值不大于1即可,算法流程如下图所示:

17-12.png

由于WGAN-GP算法相对于上一节的WGAN算法,只是针对鉴别者网络的训练过程做了修改,其他都没变,因此这里只给出WGAN-GP的鉴别者网络训练代码:

def train_discriminator(self, image_batch):'''训练鉴别师网络,它的训练分两步骤,首先是输入正确图片,让网络有识别正确图片的能力。然后使用生成者网络构造图片,并告知鉴别师网络图片为假,让网络具有识别生成者网络伪造图片的能力'''with tf.GradientTape(persistent=True, watch_accessed_variables=False) as tape: #只修改鉴别者网络的内部参数tape.watch(self.discriminator.trainable_variables)noise = tf.random.normal([len(image_batch), self.z_dim])true_logits = self.discriminator(image_batch, training = True)gen_imgs = self.generator(noise, training = True) #让生成者网络根据关键向量生成图片fake_logits = self.discriminator(gen_imgs, training = True)d_loss_real = tf.multiply(tf.ones_like(true_logits), true_logits)#根据推土距离将真图片的标签设置为1 d_loss_fake = tf.multiply(-tf.ones_like(fake_logits), fake_logits)#将伪造图片的标签设置为-1with tf.GradientTape(watch_accessed_variables=False) as iterploted_tape:#注意此处是与WGAn的主要差异t = tf.random.uniform(shape = (len(image_batch), 1, 1, 1)) #生成[0,1]区间的随机数interploted_imgs = tf.add(tf.multiply(1 - t, image_batch), tf.multiply(t, gen_imgs)) #获得真实图片与虚假图片中间的差值iterploted_tape.watch(interploted_imgs)interploted_loss = self.discriminator(interploted_imgs)interploted_imgs_grads = iterploted_tape.gradient(interploted_loss, interploted_imgs)#针对差值求导grad_norms = tf.norm(interploted_imgs_grads)penalty = 10 * tf.reduce_mean((grad_norms - 1) ** 2)#确保差值求导所得的模不超过1d_loss = d_loss_real + d_loss_fake + penalty #penalty 对应WGAN-GP中的GPgrads = tape.gradient(d_loss , self.discriminator.trainable_variables)self.discriminator_optimizer.apply_gradients(zip(grads, self.discriminator.trainable_variables)) #改进鉴别者网络内部参数 self.d_loss.append(d_loss)self.d_loss_real.append(d_loss_real)self.d_loss_fake.append(d_loss_fake)

这里要注意代码中实现在真假图片中间取数值点,然后让其倒数求模不超过1的实现,也就是interploted_imgs_grads的计算过程,这一小片代码决定了网络最终生成图像的质量,使用WGA-GP算法训练网络后,最终生成的人脸图像如下:

屏幕快照 2020-05-08 上午10.28.11.png

可以看到网络生成的人脸图像非常细腻生动,虽然有些人脸图像不够清楚,但绝大多数人脸图像,例如第一行第一章人脸图像,你很难想象它是由神经网络生成的虚拟人脸图像,因为它太逼真了。前段时间流行的deep fake,其原理差不多,只是在实现的技术层面做了更多的优化和处理。

更详细的讲解和代码调试演示过程,请点击链接

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于使用WGAN-GP算法构造精致人脸的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950027

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完