使用WGAN-GP算法构造精致人脸

2024-04-30 21:58

本文主要是介绍使用WGAN-GP算法构造精致人脸,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一节中可以看到基于”推土距离“的WGAN网络能够有效生成马图片,但是网络构造能力有所不足,因此导致有些图片模糊,甚至有些图片连马的轮廓都没有构建出来,本节我们改进WGAN网络,让它具有更强大的图像生成能力。

在介绍WGAN网络算法时提到,如果把网络看成一个函数,那么网络要想具备好的图像生成能力就必须满足1-Lipshitz条件,也就是要满足公式:

屏幕快照 2020-05-08 上午10.06.59.png

根据微积分的中值定理,如果函数f(x)可导,那么对任意x1,x2,可以找到位于(x1,x2)之间的x3,使得如下公式成了:

屏幕快照 2020-05-08 上午10.09.44.png

将它带入到上面公式就有:
屏幕快照 2020-05-08 上午10.10.42.png
这意味着如果函数满足1-Lipshitz条件,那么它必须在定义域内的没一点都可导,而且其求倒数后的结果绝对值不能大于1,这是一个相当苛刻的条件。所以上一节描述WGAN网络时,算法作者想不到好的办法让构造的网络满足这个条件,于是”拍脑袋“想出了将网络内部参数的数值全部剪切到(-1,1)之间,这也是造成网络生成图像质量不好的原因。

如果把函数f看做鉴别者网络,把输入的参数x看做是输入网络的图片,那么需要网络对所有输入图片求导后,所得结果求模后不大于1.这里需要进一步解释的是,由于图片含有多个像素点,如果把每一个像素点的值都看成是输入网络的参数,那么网络就是一个多元函数f(x1,x2,…xn),其中x1,x2…xn就是输入图片的像素值,对其求导就是分别针对x1,x2…xn求导,如果使用f1对应与针对x1求导后的结果,那么对所有x1,x2…xn求导后就会得到一个向量(f1,f2…fn),将该向量求模就对应第二个公式中的|f’(xn)|。

问题在于算法要求对所有输入图片都要满足求模后结果不大于1的要求,这点我们无法做到,因为我们不可能拿所有图像输入到网络。例如要让网络生成人脸,我们也不可能拿所有人脸图像来训练网络,因此就要做折中或妥协,我们拿一张真的人脸图像,然后用构造者网络生成一张假的人脸图像,在这两个人脸图像之间取一点,然后让网络对该点求导后结果的绝对值不大于1即可,算法流程如下图所示:

17-12.png

由于WGAN-GP算法相对于上一节的WGAN算法,只是针对鉴别者网络的训练过程做了修改,其他都没变,因此这里只给出WGAN-GP的鉴别者网络训练代码:

def train_discriminator(self, image_batch):'''训练鉴别师网络,它的训练分两步骤,首先是输入正确图片,让网络有识别正确图片的能力。然后使用生成者网络构造图片,并告知鉴别师网络图片为假,让网络具有识别生成者网络伪造图片的能力'''with tf.GradientTape(persistent=True, watch_accessed_variables=False) as tape: #只修改鉴别者网络的内部参数tape.watch(self.discriminator.trainable_variables)noise = tf.random.normal([len(image_batch), self.z_dim])true_logits = self.discriminator(image_batch, training = True)gen_imgs = self.generator(noise, training = True) #让生成者网络根据关键向量生成图片fake_logits = self.discriminator(gen_imgs, training = True)d_loss_real = tf.multiply(tf.ones_like(true_logits), true_logits)#根据推土距离将真图片的标签设置为1 d_loss_fake = tf.multiply(-tf.ones_like(fake_logits), fake_logits)#将伪造图片的标签设置为-1with tf.GradientTape(watch_accessed_variables=False) as iterploted_tape:#注意此处是与WGAn的主要差异t = tf.random.uniform(shape = (len(image_batch), 1, 1, 1)) #生成[0,1]区间的随机数interploted_imgs = tf.add(tf.multiply(1 - t, image_batch), tf.multiply(t, gen_imgs)) #获得真实图片与虚假图片中间的差值iterploted_tape.watch(interploted_imgs)interploted_loss = self.discriminator(interploted_imgs)interploted_imgs_grads = iterploted_tape.gradient(interploted_loss, interploted_imgs)#针对差值求导grad_norms = tf.norm(interploted_imgs_grads)penalty = 10 * tf.reduce_mean((grad_norms - 1) ** 2)#确保差值求导所得的模不超过1d_loss = d_loss_real + d_loss_fake + penalty #penalty 对应WGAN-GP中的GPgrads = tape.gradient(d_loss , self.discriminator.trainable_variables)self.discriminator_optimizer.apply_gradients(zip(grads, self.discriminator.trainable_variables)) #改进鉴别者网络内部参数 self.d_loss.append(d_loss)self.d_loss_real.append(d_loss_real)self.d_loss_fake.append(d_loss_fake)

这里要注意代码中实现在真假图片中间取数值点,然后让其倒数求模不超过1的实现,也就是interploted_imgs_grads的计算过程,这一小片代码决定了网络最终生成图像的质量,使用WGA-GP算法训练网络后,最终生成的人脸图像如下:

屏幕快照 2020-05-08 上午10.28.11.png

可以看到网络生成的人脸图像非常细腻生动,虽然有些人脸图像不够清楚,但绝大多数人脸图像,例如第一行第一章人脸图像,你很难想象它是由神经网络生成的虚拟人脸图像,因为它太逼真了。前段时间流行的deep fake,其原理差不多,只是在实现的技术层面做了更多的优化和处理。

更详细的讲解和代码调试演示过程,请点击链接

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于使用WGAN-GP算法构造精致人脸的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950027

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三