GARCH时间序列滚动模型

2024-04-30 19:28

本文主要是介绍GARCH时间序列滚动模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

滚动模型是一种经济模型,用于描述经济中的决策和动态调整。它通常用于分析长期决策的影响,并考虑在不同时间点上的变化和调整。
本文主要是ARIMA、garch滚动模型的解释和基础代码,原文数据可通过下方链接获取,代码可关注gzh‘finance褪黑素’回复【20240430】获取。

一、数据介绍

本文选用的时间序列数据为某股票1481天内的收盘价数据,如下图所示,第一列为未经处理过的年月日时间,第二列为收盘价数据,在进行正式的模型之前,一定要把时间序列数据处理为内置模型可接受的时间性数据,第二列数据一定要是数值型数据,不能是文本性数据,这也是容易出错的地方。

在这里插入图片描述

将第一列数据变为时间数据:

data['交易日期'] = pd.to_datetime(data['交易日期'])
data.set_index('交易日期', inplace=True)

有划分训练集和测试集来验证模型准确需要的可加如下代码:

train_start = '2018-03-01'
train_end = '2022-02-28'
test_start = '2023-03-01'
test_end = '2024-04-08'train_data = data[train_start:train_end]['日收盘价']
test_data = data[test_start:test_end]['日收盘价']

这样train_data和test_data都变成有时间标签index的收盘价数据了

二、滑动garch模型

代码逻辑:首先,通过循环遍历每个测试期间的开始到结束日期,训练数据是从当前测试月份的开始日期往前推36个月的数据(开始时间),结束时期是从开始日期经过滑动窗口的长度后的日期,根据日期从整个集中数据中选择当前窗口内的训练数据,这些数据通常是用来模型的。
利用选定的训练数据,建立了GARCH模型,这是一种用于预测波动率的模型。
使用已完成的模型进行预测,得到一个时间步长为1的预测序列,将每个月的波动率预测结果添加到rolling_predictions列表中,最后输出每个月的波动率预测结果。

rolling_predictions = []
for test_month_start in pd.date_range(test_start, test_end, freq='MS'):test_month_end = test_month_start + pd.offsets.MonthEnd(0)train_end_window = test_month_starttrain_start_window = train_end_window - pd.offsets.MonthBegin(36)#向前移动一个月train_set = data[train_start_window:train_end_window]['日收盘价']model = arch_model(train_set, vol='Garch', p=1, q=1)model_fit = model.fit()forecast = model_fit.forecast(horizon=1)forecast_variance = forecast.variance.values.squeeze()rolling_predictions.append(forecast_variance)
print("Rolling Predictions:")
for prediction in rolling_predictions:print(prediction)

具体完整代码可关注gzh‘finance褪黑素’回复关键词【20240430】获取,数据可通过下方链接获取。

这篇关于GARCH时间序列滚动模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949716

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间