Spatial Transformer Networks(STN)代码分析

2024-04-30 17:48

本文主要是介绍Spatial Transformer Networks(STN)代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是比较早的关于 attention的 文章了。

早且作用大,效果也不错。

关于这篇文章的解读有很多,一找一大堆,就不再赘述。

首先看看文章的解读,看懂原理,然后找到代码,对着看看,明白之后就自己会改了,就可以用到自己需要的地方了。

例如,文章解说和代码可参考:
一个文章解说地址
一个code地址

简单来说,就是在分类之前,先将原图作用于一个变换矩阵得到新的图,再去分类。

所以核心就是
1、得到变换矩阵,一个2*3的矩阵,可以实现平移缩放旋转裁剪等操作。
2、通过变换矩阵得到射变换前后的坐标的映射关系,即grid。
2、原图作用于grid之后得到新图,再卷积输出分类。

一个使用代码如下:


class STNSVHNet(nn.Module):def __init__(self, spatial_dim,in_channels, stn_kernel_size, kernel_size, num_classes=10, use_dropout=False):super(STNSVHNet, self).__init__()self._in_ch = in_channels self._ksize = kernel_size self._sksize = stn_kernel_sizeself.ncls = num_classes self.dropout = use_dropout self.drop_prob = 0.5self.stride = 1 self.spatial_dim = spatial_dimself.stnmod = STNModule.SpatialTransformer(self._in_ch, self.spatial_dim, self._sksize)self.conv1 = nn.Conv2d(self._in_ch, 32, kernel_size=self._ksize, stride=self.stride, padding=1, bias=False)self.conv2 = nn.Conv2d(32, 64, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(64, 128, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(128*4*4, 3092)self.fc2 = nn.Linear(3092, self.ncls)def forward(self, x):rois, affine_grid = self.stnmod(x)out = F.relu(self.conv1(rois))out = F.max_pool2d(out, 2)out = F.relu(self.conv2(out))out = F.max_pool2d(out, 2)out = F.relu(self.conv3(out))out = out.view(-1, 128*4*4)if self.dropout:out = F.dropout(self.fc1(out), p=0.5)else:out = self.fc1(out)out = self.fc2(out)return out

被调用的STN代如下:


class SpatialTransformer(nn.Module):"""Implements a spatial transformer as proposed in the Jaderberg paper. Comprises of 3 parts:1. Localization Net2. A grid generator 3. A roi pooled module.The current implementation uses a very small convolutional net with 2 convolutional layers and 2 fully connected layers. Backends can be swapped in favor of VGG, ResNets etc. TTMVReturns:A roi feature map with the same input spatial dimension as the input feature map. """def __init__(self, in_channels, spatial_dims, kernel_size,use_dropout=False):super(SpatialTransformer, self).__init__()self._h, self._w = spatial_dims self._in_ch = in_channels self._ksize = kernel_sizeself.dropout = use_dropout# localization net self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False) # size : [1x3x32x32]self.conv2 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv4 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(32*4*4, 1024)self.fc2 = nn.Linear(1024, 6)def forward(self, x): """Forward pass of the STN module. x -> input feature map """batch_images = xx = F.relu(self.conv1(x.detach()))x = F.relu(self.conv2(x))x = F.max_pool2d(x, 2)x = F.relu(self.conv3(x))x = F.max_pool2d(x,2)x = F.relu(self.conv3(x))x = F.max_pool2d(x, 2)print("Pre view size:{}".format(x.size()))x = x.view(-1, 32*4*4)if self.dropout:x = F.dropout(self.fc1(x), p=0.5)x = F.dropout(self.fc2(x), p=0.5)else:x = self.fc1(x)x = self.fc2(x) # params [Nx6]x = x.view(-1, 2,3) # change it to the 2x3 matrix print(x.size())affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))assert(affine_grid_points.size(0) == batch_images.size(0)), "The batch sizes of the input images must be same as the generated grid."rois = F.grid_sample(batch_images, affine_grid_points)print("rois found to be of size:{}".format(rois.size()))return rois, affine_grid_points

核心代码就两句

affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))
rois = F.grid_sample(batch_images, affine_grid_points)

可以参考这个理解一下:
Pytorch中的仿射变换(affine_grid)

  • batch_images:是原图
  • X:是2*3的变换矩阵,是原图经过一系列卷积等网络结构得到。
  • X后面的参数:表示在仿射变换中的输出的shape,其格式 [N, C, H, W],这里使得输出的size大小维度和原图一致。
  • F.affine_grid:即affine_grid_points 是得到仿射变换前后的坐标的映射关系。返回Shape为 [N, H, W, 2] 的4-D Tensor,表示其中,N、H、W分别为仿射变换中输出feature map的batch size、高和宽。
  • grid_sample:就是将映射关系作用于原图,得到新的图,再将新图进行卷积等操作,输出即可。

因为是有监督学习,所以X会自己学习得到。后面就都有了。

这篇关于Spatial Transformer Networks(STN)代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949519

相关文章

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

springboot项目中集成shiro+jwt完整实例代码

《springboot项目中集成shiro+jwt完整实例代码》本文详细介绍如何在项目中集成Shiro和JWT,实现用户登录校验、token携带及接口权限管理,涉及自定义Realm、ModularRe... 目录简介目的需要的jar集成过程1.配置shiro2.创建自定义Realm2.1 LoginReal

SpringBoot集成Shiro+JWT(Hutool)完整代码示例

《SpringBoot集成Shiro+JWT(Hutool)完整代码示例》ApacheShiro是一个强大且易用的Java安全框架,提供了认证、授权、加密和会话管理功能,在现代应用开发中,Shiro因... 目录一、背景介绍1.1 为什么使用Shiro?1.2 为什么需要双Token?二、技术栈组成三、环境