【七十六】【算法分析与设计】2435. 矩阵中和能被 K 整除的路径,87. 扰乱字符串,三维动态规划

本文主要是介绍【七十六】【算法分析与设计】2435. 矩阵中和能被 K 整除的路径,87. 扰乱字符串,三维动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2435. 矩阵中和能被 K 整除的路径

给你一个下标从 0 开始的 m x n 整数矩阵 grid 和一个整数 k 。你从起点 (0, 0) 出发,每一步只能往 或者往 ,你想要到达终点 (m - 1, n - 1)

  • 请你返回路径和能被 k 整除的路径数目,由于答案可能很大,返回答案对 10(9)7 取余 的结果。

示例 1:

输入:grid = [[5,2,4],[3,0,5],[0,7,2]], k = 3 输出:2 解释:有两条路径满足路径上元素的和能被 k 整除。 第一条路径为上图中用红色标注的路径,和为 5 + 2 + 4 + 5 + 2 = 18 ,能被 3 整除。 第二条路径为上图中用蓝色标注的路径,和为 5 + 3 + 0 + 5 + 2 = 15 ,能被 3 整除。

示例 2:

输入:grid = [[0,0]], k = 5 输出:1 解释:红色标注的路径和为 0 + 0 = 0 ,能被 5 整除。

示例 3:

输入:grid = [[7,3,4,9],[2,3,6,2],[2,3,7,0]], k = 1 输出:10 解释:每个数字都能被 1 整除,所以每一条路径的和都能被 k 整除。

提示:

  • m == grid.length

  • n == grid[i].length

  • 1 <= m, n <= 5 * 10(4)

  • 1 <= m * n <= 5 * 10(4)

  • 0 <= grid[i][j] <= 100

  • 1 <= k <= 50

1.

定义f函数,希望将已知信息扔进去加工出我们希望的结果.

我们希望得到从(0,0)位置开始到右下角路径和对k取余为0的路径数.

可以定义f函数从(i,j)位置开始到右下角路径和对k取余为r的路径数.

因此我们需要得到f(0,0,0)的结果.

2.

我们只走一步,从(i,j)位置开始到右下角路径和对k取余为r的路径数.

走一步的结果是(i+1,j)位置或者(i,j+1)位置,能不能找到两者的等价关系.

可以将(i,j)位置的元素值假设为a,走一步位置到右下角的路径和假设为b.

(a+b)%k=r,等价于(a%k+b%k)%k=r.

a%k范围是[0,k-1],b%k范围是[0,k-1].

a%k+b%k范围是[0,2*k-1].

r的范围是[0,k-1].

因此a%k+b%k=r或者r+k.

b%k=r-a%k或者r+k-a%k

b%k=(r+k-a%k)%k.

因此从(i,j)位置开始到右下角路径和对k取余为r的路径数.等价于走一步开始到右下角路径和对k取余为(r+k-a%k)%k的路径数.

3.

处理边界情况,先把状态转移方程写出来,dp[i][j][r]=dp[i+1][j][(r+k-a%k)%k]+dp[i][j+1][(r+k-a%k)%k].

越界的情况是i或者j.很容易知道越界返回0即可.

思考basecase情况,也就是最基本的可以直接得出答案的情况.

也就是当前位置是右下角位置,此时对k取余为r的路径数只需要判断当前元素对k取余是不是等于r即可.

#include <vector>
using namespace std;class Solution {
public:vector<vector<int>> grid; // 定义一个二维数组用于存储输入的网格int k, n, m; // k为路径和需要被整除的数,n和m分别为网格的行数和列数vector<vector<vector<int>>> dp; // 定义一个三维动态规划数组,用于存储中间结果const int MOD = 1e9 + 7; // 定义一个大数作为模数,以防止结果过大// 初始化动态规划数组的辅助函数void solveInit() {n = grid.size(), m = grid[0].size(); // 更新网格的行数和列数dp.clear(); // 清空之前的动态规划数组// 重新初始化动态规划数组的大小为n*m*kdp.resize(n, vector<vector<int>>(m, vector<int>(k, -1)));}// 深度优先搜索的递归函数,用于计算满足条件的路径数目int dfs(int i, int j, int r) {// 如果当前位置超出网格范围,则无法继续移动,返回0if (i >= n || j >= m)return 0;// 如果到达终点,检查路径和是否能被k整除if (i == n - 1 && j == m - 1)return (grid[i][j] % k == r) ? 1 : 0;// 如果当前状态已经在dp数组中计算过,则直接返回结果if (dp[i][j][r] != -1)return dp[i][j][r];int newR = (r + k - (grid[i][j] % k)) % k; // 计算新的路径和对应的余数// 递归计算向下移动和向右移动到达终点的路径数目,并取模dp[i][j][r] = (dfs(i + 1, j, newR) + dfs(i, j + 1, newR)) % MOD;return dp[i][j][r];}// 主函数,用于计算满足条件的路径数目int numberOfPaths(vector<vector<int>>& _grid, int _k) {grid = _grid; // 更新输入的网格k = _k; // 更新k的值solveInit(); // 初始化动态规划数组// 从起点(0, 0)开始,路径和的初始余数为0,递归计算路径数目return dfs(0, 0, 0);}
};

87. 扰乱字符串

使用下面描述的算法可以扰乱字符串 s 得到字符串 t

  1. 如果字符串的长度为 1 ,算法停止

  2. 如果字符串的长度 > 1 ,执行下述步骤:

    1. 在一个随机下标处将字符串分割成两个非空的子字符串。即,如果已知字符串 s ,则可以将其分成两个子字符串 xy ,且满足 s = x + y

    2. 随机 决定是要「交换两个子字符串」还是要「保持这两个子字符串的顺序不变」。即,在执行这一步骤之后,s 可能是 s = x + y 或者 s = y + x

    3. xy 这两个子字符串上继续从步骤 1 开始递归执行此算法。

给你两个 长度相等 的字符串 s1 s2,判断 s2 是否是 s1 的扰乱字符串。如果是,返回 true ;否则,返回 false

示例 1:

输入:s1 = "great", s2 = "rgeat" 输出:true 解释:s1 上可能发生的一种情形是: "great" --> "gr/eat" // 在一个随机下标处分割得到两个子字符串 "gr/eat" --> "gr/eat" // 随机决定:「保持这两个子字符串的顺序不变」 "gr/eat" --> "g/r / e/at" // 在子字符串上递归执行此算法。两个子字符串分别在随机下标处进行一轮分割 "g/r / e/at" --> "r/g / e/at" // 随机决定:第一组「交换两个子字符串」,第二组「保持这两个子字符串的顺序不变」 "r/g / e/at" --> "r/g / e/ a/t" // 继续递归执行此算法,将 "at" 分割得到 "a/t" "r/g / e/ a/t" --> "r/g / e/ a/t" // 随机决定:「保持这两个子字符串的顺序不变」 算法终止,结果字符串和 s2 相同,都是 "rgeat" 这是一种能够扰乱 s1 得到 s2 的情形,可以认为 s2 是 s1 的扰乱字符串,返回 true

示例 2:

输入:s1 = "abcde", s2 = "caebd" 输出:false

示例 3:

输入:s1 = "a", s2 = "a" 输出:true

提示:

  • s1.length == s2.length

  • 1 <= s1.length <= 30

  • s1s2 由小写英文字母组成

1.

s1[i,j]区间是否可以转化为s2[x,y]区间.f函数定义.

走一步,枚举所有分割的情况,对于每一种情况考虑交换或者不交换.

class Solution {
public:string s1, s2; // 声明两个字符串s1和s2int n; // 字符串的长度vector<vector<vector<vector<int>>>> dp; // 声明一个四维动态规划数组dp// 初始化动态规划数组的辅助函数void solveinit() {n = s1.size(); // 获取字符串s1的长度dp.clear(), // 清空之前的动态规划数组dp.resize(n, vector<vector<vector<int>>>(n, vector<vector<int>>(n, vector<int>(n, -1)))); // 初始化dp数组}// 深度优先搜索的递归函数,用于判断s2是否是s1的扰乱字符串bool dfs(int i, int j, int x, int y) {// 如果当前状态已经在dp数组中计算过,则直接返回结果if (dp[i][j][x][y] != -1)return dp[i][j][x][y];// 如果子串长度为1,判断对应字符是否相等if (i == j) {dp[i][j][x][y] = s1[i] == s2[x];return s1[i] == s2[x];}bool flag = false; // 初始化标志位为false// 枚举s1的子串分割点for (int k = 0; k < j - i; k++) {// 情况1:保持s1的子串顺序,判断s2的对应子串是否满足条件flag |= (dfs(i, i + k, x, x + k) && dfs(i + k + 1, j, x + k + 1, y));// 情况2:交换s1的子串顺序,判断s2的对应子串是否满足条件flag |= (dfs(i, i + k, y - k, y) && dfs(i + k + 1, j, x, y - k - 1));}// 存储当前状态的计算结果dp[i][j][x][y] = flag;return flag; // 返回当前状态的计算结果}// 主函数,用于判断s2是否是s1的扰乱字符串bool isScramble(string _s1, string _s2) {s1 = _s1, s2 = _s2; // 更新输入的两个字符串solveinit(); // 初始化动态规划数组// 从整个字符串的起始位置开始判断return dfs(0, n - 1, 0, n - 1);}
};

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【七十六】【算法分析与设计】2435. 矩阵中和能被 K 整除的路径,87. 扰乱字符串,三维动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949307

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引