Ignite集成Spark之IgniteDataFrames

2024-04-30 13:38

本文主要是介绍Ignite集成Spark之IgniteDataFrames,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ignite是一个分布式的内存数据库、缓存和处理平台,为事务型、分析型和流式负载而设计,在保证扩展性的前提下提供了内存级的性能。

Spark是一个流式数据和计算引擎,通常从HDFS或者其他存储中获取数据,一直以来,他都倾向于OLAP型业务,并且聚焦于MapReduce类型负载。

因此,这两种技术是可以互补的。

将Ignite与Spark整合

整合这两种技术会为Spark用户带来若干明显的好处:

  • 通过避免大量的数据移动,获得真正可扩展的内存级性能;
  • 提高RDD、DataFrame和SQL的性能;
  • 在Spark作业之间更方便地共享状态和数据。

下图中显示了如何整合这两种技术,并且标注了显著的优势: 

在第一篇文章中,主要聚焦于IgniteRDD,而本文会聚焦于IgniteDataFrames。

IgniteDataframes

Spark的DataFrame API为描述数据引入了模式的概念,Spark通过表格的形式进行模式的管理和数据的组织。

DataFrame是一个组织为命名列形式的分布式数据集,从概念上讲,DataFrame等同于关系数据库中的表,并允许Spark使用Catalyst查询优化器来生成高效的查询执行计划。而RDD只是跨集群节点分区化的元素集合。

Ignite扩展了DataFrames,简化了开发,改进了将Ignite作为Spark的内存存储时的数据访问时间,好处包括:

  • 通过Ignite读写DataFrames时,可以在Spark作业之间共享数据和状态;
  • 通过优化Spark的查询执行计划加快SparkSQL查询,这些主要是通过IgniteSQL引擎的高级索引以及避免了Ignite和Spark之间的网络数据移动实现的。

IgniteDataframes示例

下面通过一些代码以及搭建几个小程序的方式,了解Ignite DataFrames如何使用,如果想实际运行这些代码,可以从GitHub上下载。

一共会写两个Java的小应用,然后在IDE中运行,还会在这些Java应用中执行一些SQL。

一个Java应用会从JSON文件中读取一些数据,然后创建一个存储于Ignite的DataFrame,这个JSON文件Ignite的发行版中已经提供,另一个Java应用会从Ignite的DataFrame中读取数据然后使用SQL进行查询。

下面是写应用的代码:

public class DFWriter {private static final String CONFIG = "config/example-ignite.xml";public static void main(String args[]) {Ignite ignite = Ignition.start(CONFIG);SparkSession spark = SparkSession.builder().appName("DFWriter").master("local").config("spark.executor.instances", "2").getOrCreate();Logger.getRootLogger().setLevel(Level.OFF);Logger.getLogger("org.apache.ignite").setLevel(Level.OFF);Dataset<Row> peopleDF = spark.read().json(resolveIgnitePath("resources/people.json").getAbsolutePath());System.out.println("JSON file contents:");peopleDF.show();System.out.println("Writing DataFrame to Ignite.");peopleDF.write().format(IgniteDataFrameSettings.FORMAT_IGNITE()).option(IgniteDataFrameSettings.OPTION_CONFIG_FILE(), CONFIG).option(IgniteDataFrameSettings.OPTION_TABLE(), "people").option(IgniteDataFrameSettings.OPTION_CREATE_TABLE_PRIMARY_KEY_FIELDS(), "id").option(IgniteDataFrameSettings.OPTION_CREATE_TABLE_PARAMETERS(), "template=replicated").save();System.out.println("Done!");Ignition.stop(false);}
}

DFWriter中,首先创建了SparkSession,它包含了应用名,之后会使用spark.read().json()读取JSON文件并且输出文件内容,下一步是将数据写入Ignite存储。下面是DFReader的代码:

public class DFReader {private static final String CONFIG = "config/example-ignite.xml";public static void main(String args[]) {Ignite ignite = Ignition.start(CONFIG);SparkSession spark = SparkSession.builder().appName("DFReader").master("local").config("spark.executor.instances", "2").getOrCreate();Logger.getRootLogger().setLevel(Level.OFF);Logger.getLogger("org.apache.ignite").setLevel(Level.OFF);System.out.println("Reading data from Ignite table.");Dataset<Row> peopleDF = spark.read().format(IgniteDataFrameSettings.FORMAT_IGNITE()).option(IgniteDataFrameSettings.OPTION_CONFIG_FILE(), CONFIG).option(IgniteDataFrameSettings.OPTION_TABLE(), "people").load();peopleDF.createOrReplaceTempView("people");Dataset<Row> sqlDF = spark.sql("SELECT * FROM people WHERE id > 0 AND id < 6");sqlDF.show();System.out.println("Done!");Ignition.stop(false);}
}

DFReader中,初始化和配置与DFWriter相同,这个应用会执行一些过滤,需求是查找所有的id > 0 以及 < 6的人,然后输出结果。

在IDE中,通过下面的代码可以启动一个Ignite节点:

public class ExampleNodeStartup {public static void main(String[] args) throws IgniteException {Ignition.start("config/example-ignite.xml");}
}

到此,就可以对代码进行测试了。

运行应用

首先在IDE中启动一个Ignite节点,然后运行DFWriter应用,输出如下:

JSON file contents:
+-------------------+---+------------------+
|         department| id|              name|
+-------------------+---+------------------+
|Executive Committee|  1|       Ivan Ivanov|
|Executive Committee|  2|       Petr Petrov|
|         Production|  3|          John Doe|
|         Production|  4|         Ann Smith|
|         Accounting|  5|    Sergey Smirnov|
|         Accounting|  6|Alexandra Sergeeva|
|                 IT|  7|         Adam West|
|        Head Office|  8|    Beverley Chase|
|        Head Office|  9|      Igor Rozhkov|
|                 IT| 10|Anastasia Borisova|
+-------------------+---+------------------+Writing DataFrame to Ignite.
Done!

如果将上面的结果与JSON文件的内容进行对比,会显示两者是一致的,这也是期望的结果。

下一步会运行DFReader,输出如下:

Reading data from Ignite table.
+-------------------+--------------+---+
|         DEPARTMENT|          NAME| ID|
+-------------------+--------------+---+
|Executive Committee|   Ivan Ivanov|  1|
|Executive Committee|   Petr Petrov|  2|
|         Production|      John Doe|  3|
|         Production|     Ann Smith|  4|
|         Accounting|Sergey Smirnov|  5|
+-------------------+--------------+---+Done!

这也是期望的输出。

总结

通过本文,会发现使用Ignite DataFrames是如何简单,这样就可以通过Ignite DataFrame进行数据的读写了。

未来,这些代码示例也会作为Ignite发行版的一部分进行发布。

关于Ignite和Spark的集成,内容就是这些了。

这篇关于Ignite集成Spark之IgniteDataFrames的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949017

相关文章

Spring Boot 集成 mybatis核心机制

《SpringBoot集成mybatis核心机制》这篇文章给大家介绍SpringBoot集成mybatis核心机制,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值... 目录Spring Boot浅析1.依赖管理(Starter POMs)2.自动配置(AutoConfigu

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

springBoot (springCloud2025)集成redisCluster 集群的操作方法

《springBoot(springCloud2025)集成redisCluster集群的操作方法》文章介绍了如何使用SpringBoot集成RedisCluster集群,并详细说明了pom.xm... 目录pom.XMLapplication.yamlcluster配置类其他配置类连接池配置类Redis

Python连接Spark的7种方法大全

《Python连接Spark的7种方法大全》ApacheSpark是一个强大的分布式计算框架,广泛用于大规模数据处理,通过PySpark,Python开发者能够无缝接入Spark生态系统,本文给大家介... 目录第一章:python与Spark集成概述PySpark 的核心优势基本集成配置步骤启动一个简单的

SpringBoot集成WebService(wsdl)实践

《SpringBoot集成WebService(wsdl)实践》文章介绍了SpringBoot项目中通过缓存IWebService接口实现类的泛型入参类型,减少反射调用提升性能的实现方案,包含依赖配置... 目录pom.XML创建入口ApplicationContextUtils.JavaJacksonUt

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service