【机器学习基础1】什么是机器学习、预测模型解决问题的步骤、机器学习的Python生态圈

本文主要是介绍【机器学习基础1】什么是机器学习、预测模型解决问题的步骤、机器学习的Python生态圈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一. 什么是机器学习
    • 1. 概念
    • 2. 机器学习算法分类
  • 二. 利用预测模型解决问题的步骤
  • 三. 机器学习的Python生态圈

一. 什么是机器学习

1. 概念

机器学习(Machine Learning,ML)是一门多领域的交叉学科,涉及概率论、统计学、线性代数、算法等多门学科。

它专门研究计算机如何模拟和学习人的行为,以获取新的知识或技能,重新组织已有的知识结构使之不断完善自身的性能。

机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。

 

2. 机器学习算法分类

机器学习的算法分为两大类:监督学习和无监督学习。

监督学习

监督学习即在机器学习过程中提供对错指示。一般是在数据组中包含最终结果(0,1),通过算法让机器自己减少误差。这一类学习主要应用于分类和预测(Regression &Classify)。

基本逻辑
监督学习从给定的训练数据集中学习出一个目标函数,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入和输出,也可以说包括特征和目标,训练集中的目标是由人标注的

常见的监督学习算法包括回归分析和统计分类。

 
非监督学习

非监督学习又称归纳性学习(Clustering),利用K方式(KMean)建立中心(Centriole),通过循环和递减运算(Iteration&Descent)来减小误差,达到分类的目的。

 

 

二. 利用预测模型解决问题的步骤

预测模型

与统计学不同,机器学习的预测模型是用来理解数据的,聚焦于如何创建一个更加精准的模型,而不是用来解释模型是如何设置的。

 

利用机器学习的预测模型来解决问题共有六个基本步骤,如图:

在这里插入图片描述

  • 定义问题:研究和提炼问题的特征,以帮助我们更好地理解项目的目标。
  • 数据理解:通过描述性统计和可视化来分析现有的数据。
  • 数据准备:对数据进行格式化,以便于构建一个预测模型。
  • 评估算法:通过一定的方法分离一部分数据,用来评估算法模型,并选取一部分代表数据进行分析,以改善模型。
  • 优化模型:通过调参和集成算法提升预测结果的准确度。
  • 结果部署:完成模型,并执行模型来预测结果和展示。

一旦明白了如何使用Python平台来完成机器学习的任务,就可以在不同的项目中重复使用这种方法解决问题。

 

三. 机器学习的Python生态圈

Python是一种功能强大且灵活的编程语言,特别适用于机器学习,这得益于其可读性、一致性和健壮的数据科学库生态系统。

  • Python基础:Python编程需要理解基本语法、数据类型、错误处理和面向对象编程。
  • 数据科学库:熟悉NumPy进行数值操作,用Pandas进行数据处理和分析,用Matplotlib和Seaborn做数据可视化。
  • 数据预处理:涉及特征缩放和规范化、处理缺失数据、异常检测、类别数据编码,以及将数据分割为训练、验证和测试集。
  • 机器学习库:熟练使用Scikit-learn,这是一个提供广泛的监督和无监督学习算法的python库。这里需要理解如何实现线性回归、逻辑回归、决策树、随机森林、最近邻(K-NN)和K均值聚类等算法。

简单来说

  • scikit-learn提供的机器学习的算法
  • 利用NumPy数组来准备机器学习算法的数据
  • 使用Matplotlib来创建图表,展示数据
  • 通过Pandas导入、展示数据,以便增强对数据的理解和数据清洗、转换等工作.

其中

scikit-learn依赖于SciPy及其相关类库来运行。scikit-learn的基本功能主要分为六大部分:分类、回归、聚类、数据降维、模型选择和数据预处理。

需要指出的是,由于scikit-learn本身不支持深度学习,也不支持GPU加速,因此scikit-learn对于多层感知器(MLP)神经网络的实现并不适合处理大规模问题。(scikit-learn对MLP的支持在0.18版之后增加)

这篇关于【机器学习基础1】什么是机器学习、预测模型解决问题的步骤、机器学习的Python生态圈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948318

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统