rust语言tokio库spawn, blocking_spawn等的使用

2024-04-30 06:52

本文主要是介绍rust语言tokio库spawn, blocking_spawn等的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • tokio的spawn以及spawn_blocking的使用
    • tokio::task::spawn方法解析
    • tokio::task::spawn_blocking()方法解析

时间会遗忘一切

最后更新时间2024.04.29

tokio版本:

tokio的spawn以及spawn_blocking的使用

tokio::task::spawn方法解析

tokio的实现原理以及源码解析请移步我的另一篇博客:
我们举一个实际的例子来说明tokio::spawn的使用。我们创建一个tokio::main,指定工作线程数量为2,方便大家理解,如果不指定,则会与CPU数量相同。因为在这个例子中,我们一共有两个异步sleep,所以创建两个工作线程方便大家理解。

use tokio;#[tokio::main(flavor = "multi_thread", worker_threads = 2)]
async fn main() {let handle_1 = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(10));println!("sleeping 10s");});let handle_2 = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(1));println!("second spawn!");});tokio::join!(handle_1, handle_2);println!("hello world!");
}

tokio::spawn方法的返回值是一个handle,如果不调用tokio::join!方法,tokio是不会将这两个handle放入工作线程中去运行的。当我们调用了tokio::join!后,相当于同时调用了handl_1.await和handle_2.await,main函数主线程会阻塞等待这两个handle执行完成。所以最终的输出结果是这样的:

# 等1s后打印
second spawn!
# 打印second spawn后,等9s后打印
sleeping 10s
# 打印sleeping 10s后立即打印
hello world!

tokio::spawn方法的返回值是一个handle,如果对这个handle执行.await方法,会阻塞当前调用这个spawn方法的线程,只有在这个handle执行完成后,才会继续执行后面的代码。如下例所示

use tokio;#[tokio::main(flavor = "multi_thread", worker_threads = 2)]
async fn main() {let _ = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(10));println!("sleeping 10s");}).await;let _ = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(1));println!("second spawn!");}).await;println!("hello world!");
}

在该例子中,因为在主线程中,使用tokio::task::spawn创建了第一个handle_1,并调用该handle_1的.await方法,此时主线程阻塞在这里,等待handle_1执行完毕,即sleep 10s后打印sleep 10s。随后使用tokio::task::spawn创建第二个handle_2,并调用该handle_2的.await方法,此时主线程阻塞在这里,等待handle_2执行完毕,即sleep 1s后打印second spawn!。最后执行主线程中的hello world打印。

上例的输出为:

# 等10s后打印
sleeping 10s
# 打印sleeping 10s完成后等1s后打印
second spawn!
# 打印second spawn完成后立即打印
hello world!

如果我们工作线程有两个,但是我们有3个异步操作会发生什么呢?见下例:

use tokio;#[tokio::main(flavor = "multi_thread", worker_threads = 2)]
async fn main() {let handle_1 = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(10));println!("sleeping 10s");});let handle_2 = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(1));println!("second spawn!");});let handle_3 = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(5));println!("third spawn!");});tokio::join!(handle_1, handle_2, handle_3);println!("hello world!");
}

我们有3个异步spawn,分别睡眠10s、1s、5s。tokio::join按照写代码的顺序,先join的10s的handle_1,然后1s的handle_2,然后5s的handle_3。由于只有两个工作线程,所以10s的handle_1和1s的handle_2可以同时在两个工作线程中执行,但是handle_3不行,因为已经没有多余的工作线程可供handle_3去运行了,所以handle_3只能先挂起,并不执行。过了1s后,当handle_2的工作线程把handle_2执行完,此时这个工作线程空闲出来就可以去执行handle_3了,所以在handle_2的second spawn打印完成以后,handle_3开始执行,所以最终的输出如下:

# 等1s后打印
second spawn!
# 在second spawn打印后,等5s打印
third spawn!
# 在third spawn打印后,等4s打印
sleeping 10s
# 在sleeping 10s打印后,立即打印hello world
hello world!

tokio::task::spawn_blocking()方法解析

我们知道,当我们定义tokio的时候,可以定义工作线程的数量

#[tokio::main(flavor = "multi_thread", worker_threads = 2)]

但是我们可以看到,在上述的例子中,如果工作线程被阻塞了,即使这个工作线程啥都不做,他也会阻塞在那里,这样CPU就开始摸鱼了,但是我们是社会主义,怎么能摸鱼呢,所以我们不能让CPU有能摸鱼的机会,那么这些阻塞的工作应该怎么办呢?这里tokio给出了一个spawn_blocking的方法。
spawn_blocking方法中的内容,不会在工作线程中运行,而是创建了一个单独的线程用来执行写在spawn_blocking方法中的内容,这样即使是写在spawn_blocking方法中的内容是阻塞的工作,也仅仅是阻塞了新创建出来的这个线程,不会导致用来进行异步操作的工作线程阻塞,这样工作线程可以正常调度其他的各种tokio::spawn而不至于陷在那里。
请看下例:

use tokio;#[tokio::main(flavor = "multi_thread", worker_threads = 2)]
async fn main() {let handle_1 = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(10));println!("sleeping 10s");});let handle_2 = tokio::task::spawn(async {std::thread::sleep(std::time::Duration::from_secs(1));println!("second spawn!");});let handle_3 = tokio::task::spawn_blocking(async {std::thread::sleep(std::time::Duration::from_secs(5));println!("third spawn!");});tokio::join!(handle_1, handle_2, handle_3);println!("hello world!");
}

这篇关于rust语言tokio库spawn, blocking_spawn等的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948165

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三