使用mmdetection来训练自己的数据集(visdrone)(二)数据集

2024-04-29 15:44

本文主要是介绍使用mmdetection来训练自己的数据集(visdrone)(二)数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集下载

https://github.com/VisDrone/VisDrone-Dataset

数据集大小:

  • trainset (1.44 GB):
  • valset (0.07 GB):
  • testset-dev (0.28 GB):

VisDrone2019-DET-train.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)
VisDrone2019-DET-val.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)
VisDrone2019-DET-test-dev.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)
VisDrone2019-DET-test-challenge.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)

convert_visdrone2yolo.py (下载到
D:/ultralytics/ultralytics/datasets/VisDrone目录下)
convert_yolo2visdrone.py
注意:VisDrone目录自己创建

visdrone转变代码

import os
from pathlib import Path# 定义一个函数用于将VisDrone数据集的标注转换为YOLO格式的标注
def visdrone2yolo(dir):from PIL import Imagefrom tqdm import tqdm# 定义一个内部函数,用于将VisDrone的bbox坐标转换为YOLO格式的坐标def convert_box(size, box):# VisDrone框转换为YOLO xywh框dw = 1. / size[0]dh = 1. / size[1]return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh# 创建标签目录,如果不存在则创建(dir / 'labels').mkdir(parents=True, exist_ok=True)# 使用tqdm进度条迭代处理annotations文件夹中的所有txt文件pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')for f in pbar:# 获取对应图片的大小img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).sizelines = []with open(f, 'r') as file:  # 读取annotation.txt文件for row in [x.split(',') for x in file.read().strip().splitlines()]:if row[4] == '0':  # 忽略VisDrone中的‘ignored regions’类别0continuecls = int(row[5]) - 1box = convert_box(img_size, tuple(map(int, row[:4])))lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl:fl.writelines(lines)  # 将转换后的标签写入label.txt文件# 指定数据集的根目录
dir = Path("D:/ultralytics/ultralytics/datasets/VisDrone")# 转换数据集标注
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':visdrone2yolo(dir / d)  # 转换VisDrone标注为YOLO标签

然后通过yolo转coco的代码

import os
import cv2
import json
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import argparse# 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', default='./dataset/valid', type=str, help="根目录路径,包括./images和./labels及classes.txt")
parser.add_argument('--save_path', type=str, default='./valid.json', help="如果不划分数据集,则提供一个json文件路径")
parser.add_argument('--random_split', action='store_true', help="随机划分数据集,默认比例为8:1:1")
parser.add_argument('--split_by_file', action='store_true', help="根据文件划分数据集,包括./train.txt、./val.txt、./test.txt")arg = parser.parse_args()def train_test_val_split_random(img_paths, ratio_train=0.8, ratio_test=0.1, ratio_val=0.1):# 确保三个比例之和为1assert int(ratio_train + ratio_test + ratio_val) == 1train_img, middle_img = train_test_split(img_paths, test_size=1 - ratio_train, random_state=233)ratio = ratio_val / (1 - ratio_train)val_img, test_img = train_test_split(middle_img, test_size=ratio, random_state=233)print("训练集:验证集:测试集 = {}:{}:{}".format(len(train_img), len(val_img), len(test_img)))return train_img, val_img, test_imgdef train_test_val_split_by_files(img_paths, root_dir):# 根据train.txt, val.txt, test.txt文件定义训练集、验证集和测试集phases = ['train', 'val', 'test']img_split = []for p in phases:define_path = os.path.join(root_dir, f'{p}.txt')print(f'从 {define_path} 读取 {p} 数据集定义')assert os.path.exists(define_path)with open(define_path, 'r') as f:img_paths = f.readlines()# 取消注释下面一行可以使用绝对路径# img_paths = [os.path.split(img_path.strip())[1] for img_path in img_paths]img_split.append(img_paths)return img_split[0], img_split[1], img_split[2]def yolo2coco(arg):root_path = arg.root_dirprint("从路径加载数据", root_path)assert os.path.exists(root_path)originLabelsDir = os.path.join(root_path, 'labels')originImagesDir = os.path.join(root_path, 'images')with open(os.path.join(root_path, 'classes.txt')) as f:classes = f.read().strip().split()indexes = os.listdir(originImagesDir)if arg.random_split or arg.split_by_file:train_dataset = {'categories': [], 'annotations': [], 'images': []}val_dataset = {'categories': [], 'annotations': [], 'images': []}test_dataset = {'categories': [], 'annotations': [], 'images': []}for i, cls in enumerate(classes, 0):category_info = {'id': i, 'name': cls, 'supercategory': 'mark'}train_dataset['categories'].append(category_info)val_dataset['categories'].append(category_info)test_dataset['categories'].append(category_info)if arg.random_split:print("划分模式: 随机划分")train_img, val_img, test_img = train_test_val_split_random(indexes, 0.8, 0.1, 0.1)elif arg.split_by_file:print("划分模式: 根据文件划分")train_img, val_img, test_img = train_test_val_split_by_files(indexes, root_path)else:dataset = {'categories': [], 'annotations': [], 'images': []}for i, cls in enumerate(classes, 0):dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})ann_id_cnt = 0for k, index in enumerate(tqdm(indexes)):txtFile = index.replace('images', 'txt').replace('.jpg', '.txt').replace('.png', '.txt')im = cv2.imread(os.path.join(root_path, 'images/') + index)height, width, _ = im.shapeif arg.random_split or arg.split_by_file:if index in train_img:dataset = train_datasetelif index in val_img:dataset = val_datasetelif index in test_img:dataset = test_datasetdataset['images'].append({'file_name': index, 'id': k, 'width': width, 'height': height})if not os.path.exists(os.path.join(originLabelsDir, txtFile)):continuewith open(os.path.join(originLabelsDir, txtFile), 'r') as fr:labelList = fr.readlines()for label in labelList:label = label.strip().split()x = float(label[1])y = float(label[2])w = float(label[3])h = float(label[4])H, W, _ = im.shapex1 = (x - w / 2) * Wy1 = (y - h / 2) * Hx2 = (x + w / 2) * Wy2 = (y + h / 2) * Hcls_id = int(label[0])width = max(0, x2 - x1)height = max(0, y2 - y1)dataset['annotations'].append({'area': width * height,'bbox': [x1, y1, width, height],'category_id': cls_id,'id': ann_id_cnt,'image_id': k,'iscrowd': 0,'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]})ann_id_cnt += 1folder = os.path.join(root_path, 'annotations')if not os.path.exists(folder):os.makedirs(folder)if arg.random_split or arg.split_by_file:for phase in ['train', 'val', 'test']:json_name = os.path.join(root_path, 'annotations/{}.json'.format(phase))with open(json_name, 'w') as f:if phase == 'train':json.dump(train_dataset, f)elif phase == 'val':json.dump(val_dataset, f)elif phase == 'test':json.dump(test_dataset, f)print('已保存注释到 {}'.format(json_name))else:json_name = os.path.join(root_path, 'annotations/{}'.format(arg.save_path))with open(json_name, 'w') as f:json.dump(dataset, f)print('已保存注释到 {}'.format(json_name))if __name__ == "__main__":yolo2coco(arg)

运行代码

python yolo2coco.py --root_dir VisDrone2019-DET-train --save_path train.json
python yolo2coco.py --root_dir VisDrone2019-DET-val --save_path val.json
python yolo2coco.py --root_dir VisDrone2019-DET-test-dev --save_path test.json

这篇关于使用mmdetection来训练自己的数据集(visdrone)(二)数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946502

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali