路径规划 | 详解混合A*算法Hybrid A*(附ROS C++/Python/Matlab仿真)

2024-04-29 12:04

本文主要是介绍路径规划 | 详解混合A*算法Hybrid A*(附ROS C++/Python/Matlab仿真),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0 专栏介绍
  • 1 为什么需要Hybrid A*算法?
  • 2 Hybrid A*算法原理
    • 2.1 基本流程
    • 2.2 运动学约束启发式
    • 2.3 基于维诺图的路径耗散
    • 2.4 连续性节点扩展
  • 3 算法仿真
    • 3.1 ROS C++ 仿真
    • 3.2 Python仿真
    • 3.3 Matlab仿真

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 为什么需要Hybrid A*算法?

混合A*算法(Hybrid A*)是一种改进的路径规划算法,用于解决普通A*算法在某些情况下的局限性。接下来简单介绍A*算法的不足,更详细的A*算法原理请看路径规划 | 图解A*、Dijkstra、GBFS算法的异同(附C++/Python/Matlab仿真)

  • 高维连续空间的问题: A*算法在高维连续空间中效率较低,因为它需要将连续空间离散化为网格,这会导致维度爆炸,计算量增加;
  • 运动约束的问题: 在车辆或机器人路径规划中,通常需要考虑车辆或机器人的运动约束,例如转弯半径、最大速度等。普通的A*算法不考虑这些运动约束,因此可能会生成无法执行的路径。

混合A*算法成功应用于由美国政府在2007年组织的DARPA城市挑战机器人比赛中。随后,Dolgov等人在中对该算法进行了进一步研究。混合A*算法的行为类似于A*算法,关键区别在于状态转换发生在连续而非离散空间中。虽然混合A*搜索隐含地在离散化的网格上构建图形,但顶点可以达到网格中的任何连续点。为了处理连续搜索空间的无限性,采用了网格单元格的离散化形式,从而限制了图形的增长。通常,搜索空间是三维的,连续状态空间包括 x x x y y y θ \theta θ——而A*算法只有离散的 x x x y y y状态

在这里插入图片描述

2 Hybrid A*算法原理

2.1 基本流程

Hybrid A*算法流程如表所示,主要分为启发式搜索和轨迹优化两个阶段。

在这里插入图片描述

本文聚焦于第一阶段启发式搜索,也即路径规划部分。Hybrid A*采用的共轭梯度轨迹优化技术将在后续教程单独分析。对比一下Hybrid A*的规划算法和路径规划 | 图解A*、Dijkstra、GBFS算法的异同(附C++/Python/Matlab仿真)中的A*算法流程,可以发现几乎是一模一样的,下面重点分析几个不同的地方。

2.2 运动学约束启发式

A*算法的启发式函数一般采用当前点到目标点的欧氏距离,Hybrid A*算法则向启发式函数进一步引入运动学约束

h ( n ) = max ⁡ { C o n s t r a i n e d C o s t , U n c o n s t r a i n e d C o s t } h\left( n \right) =\max \left\{ \mathrm{ConstrainedCost},\mathrm{UnconstrainedCost} \right\} h(n)=max{ConstrainedCost,UnconstrainedCost}

其中:

  • C o n s t r a i n e d C o s t \mathrm{ConstrainedCost} ConstrainedCost:只考虑车辆的非完整运动学约束而不考虑障碍物的有约束启发项(Constrained heuristics),通常采用Dubins或Reeds-Shepp曲线计算该项损失。
    • Dubins曲线是指由美国数学家 Lester Dubins 在20世纪50年代提出的一种特殊类型的最短路径曲线。这种曲线通常用于描述在给定转弯半径下的无人机、汽车或船只等载具的最短路径,其特点是起始点和终点处的切线方向和曲率都是已知的,Dubins曲线包括直线段和最大转弯半径下的圆弧组成,通过合适的组合可以实现从一个姿态到另一个姿态的最短路径规划。更详细的算法原理请看曲线生成 | 图解Dubins曲线生成原理(附ROS C++/Python/Matlab仿真);
    • Reeds-Shepp曲线是一种用于描述在平面上从一个点到另一个点最优路径的数学模型。这种曲线是由美国数学家 J. A. Reeds 和 L. A. Shepp 在1990年提出的,它被广泛应用于路径规划和运动规划问题中,具有最优性、约束性和多样性,更详细的算法原理请看曲线生成 | 图解Reeds-Shepp曲线生成原理(附ROS C++/Python/Matlab仿真);
  • 只考虑障碍物信息而不考虑车辆运动学特性的无约束启发项(Unconstrained heuristics),通常采用Dijkstra或A*算法计算该项损失。

如图所示,可视化了不同类型的启发项。当环境障碍不影响规划路径时,有约束启发项损失往往大于无约束,因为后者没有考虑朝向和运动限制;当环境障碍影响规划路径时,有约束启发项损失往往小于无约束,因为后者会进行避障。因此对两项取 max ⁡ \max max算子可以综合障碍影响和运动学特性,更符合真实情况。

在这里插入图片描述

2.3 基于维诺图的路径耗散

路径耗散函数可选为

g ( n ) = ∑ i d x i ⋅ t u r n i ⋅ r e v e r i ⋅ s w i t c h i g\left( n \right) =\sum_i^{}{\mathrm{d}x_i\cdot \mathrm{turn}_i\cdot \mathrm{rever}_i\cdot \mathrm{switch}_i} g(n)=idxiturnireveriswitchi

其中 d x i \mathrm{d}x_i dxi是第 i i i步的运动长度; t u r n i \mathrm{turn}_i turni是第 i i i步的转弯惩罚(趋于选择直行); r e v e r i \mathrm{rever}_i reveri是第 i i i步的反向惩罚; s w i t c h i \mathrm{switch}_i switchi是第 i i i步的变向惩罚。

路径耗散也用Voronoi势场函数度量 g ( n ) = ∑ n ρ V ( n x , n y ) g\left( n \right) =\sum\nolimits_n^{}{\rho _V\left( n_x,n_y \right)} g(n)=nρV(nx,ny),其中

ρ V ( x , y ) = ( α α + d O ( x , y ) ) ( d V ( x , y ) d O ( x , y ) + d V ( x , y ) ) ( d O − d O max ⁡ ) 2 ( d O max ⁡ ) 2 ; d O < d O max ⁡ \rho _V\left( x,y \right) =\left( \frac{\alpha}{\alpha +d_{\mathcal{O}}\left( x,y \right)} \right) \left( \frac{d_{\mathcal{V}}\left( x,y \right)}{d_{\mathcal{O}}\left( x,y \right) +d_{\mathcal{V}}\left( x,y \right)} \right) \frac{\left( d_{\mathcal{O}}-d_{\mathcal{O}}^{\max} \right) ^2}{\left( d_{\mathcal{O}}^{\max} \right) ^2};d_{\mathcal{O}}<d_{\mathcal{O}}^{\max} ρV(x,y)=(α+dO(x,y)α)(dO(x,y)+dV(x,y)dV(x,y))(dOmax)2(dOdOmax)2;dO<dOmax

如图所示,Voronoi势场函数通过引入维诺图,使机器人可以很好地通过狭窄路段,而这些路段在传统势场方法中会产生高势垒,阻碍机器人运动

在这里插入图片描述

更详细的关于维诺图的构建算法原理,请看

  • 地图结构 | 图解维诺图Voronoi原理(附C++/Python/Matlab仿真)
  • 路径规划 | 详解维诺图Voronoi算法(附ROS C++/Python/Matlab仿真)

2.4 连续性节点扩展

搜索从车辆的当前状态 x s x_s xs开始。Hybrid A*将生成六个后继顶点,其中三个向前驾驶,另外三个向后驾驶,如图所示

在这里插入图片描述

后继顶点通过使用车辆的最小转弯半径的弧线生成,以确保生成的路径在实际中是可行的。如下面代码所示描述了上图的状态转换方式

double R = 1.3;// // 20 deg 0.349065 rad
double alpha = 14 * M_PI / 180;// R, alpha
double dy[] = { 0, -R * (1 - cos(alpha)), R * (1 - cos(alpha)) };
double dx[] = { alpha * R, R * sin(alpha), R * sin(alpha) };
double dt[] = { 0, alpha, -alpha };

状态转换的成本基于弧线的长度。额外的成本会因为改变驾驶方向、倒车以及转弯而产生,而不是直行。转弯和倒车的惩罚是乘法的(取决于路径转弯或倒车的比例),而改变驾驶方向的惩罚是恒定的。

3 算法仿真

3.1 ROS C++ 仿真

核心代码如下所示

// main process
while (!open_list.empty())
{// pop current node from open listHybridNode current = open_list.top();open_list.pop();// current node does not exist in closed listif (closed_list.find(current.id_) != closed_list.end())continue;closed_list.insert(std::make_pair(current.id_, current));expand.emplace_back(current.x_, current.y_, 0, 0, _worldToIndex(current.x_, current.y_));// goal shotstd::vector<Node> path_dubins;if (std::hypot(current.x_ - goal.x_, current.y_ - goal.y_) < 50){if (dubinsShot(current, goal, path_dubins)){path = _convertClosedListToPath(closed_list, start, current);std::reverse(path.begin(), path.end());path.insert(path.end(), path_dubins.begin(), path_dubins.end());std::reverse(path.begin(), path.end());return true;}}// explore neighbor of current nodefor (size_t i = 0; i < dir; i++){// explore a new nodeHybridNode node_new = current + motions[i];updateIndex(node_new);// node_new in closed listif (closed_list.find(node_new.id_) != closed_list.end())continue;// next node hit the boundary or obstacle// prevent planning failed when the current within inflationif ((_worldToIndex(node_new.x_, node_new.y_) < 0) || (_worldToIndex(node_new.x_, node_new.y_) >= ns_) ||(node_new.t_ / DELTA_HEADING >= HEADINGS) ||(global_costmap[_worldToIndex(node_new.x_, node_new.y_)] >= lethal_cost_ * factor_ &&global_costmap[_worldToIndex(node_new.x_, node_new.y_)] >=global_costmap[_worldToIndex(current.x_, current.y_)]))continue;node_new.pid_ = current.id_;updateHeuristic(node_new);open_list.push(node_new);}
}

效果如下所示

在这里插入图片描述

3.2 Python仿真

核心代码如下所示:

# Run loop while path is found or open set is empty
while True:counter +=1# Check if openSet is empty, if empty no solution availableif not openSet:return None# Get first node in the priority queuecurrentNodeIndex = costQueue.popitem()[0]currentNode = openSet[currentNodeIndex]# Revove currentNode from openSet and add it to closedSetopenSet.pop(currentNodeIndex)closedSet[currentNodeIndex] = currentNode# Get Reed-Shepp Node if availablerSNode = reedsSheppNode(currentNode, goalNode, mapParameters)# Id Reeds-Shepp Path is found exitif rSNode:closedSet[index(rSNode)] = rSNodebreak# USED ONLY WHEN WE DONT USE REEDS-SHEPP EXPANSION OR WHEN START = GOALif currentNodeIndex == index(goalNode):print("Path Found")print(currentNode.traj[-1])break# Get all simulated Nodes from current nodefor i in range(len(motionCommand)):simulatedNode = kinematicSimulationNode(currentNode, motionCommand[i], mapParameters)# Check if path is within map bounds and is collision freeif not simulatedNode:continue# Draw Simulated Nodex,y,z =zip(*simulatedNode.traj)plt.plot(x, y, linewidth=0.3, color='g')# Check if simulated node is already in closed setsimulatedNodeIndex = index(simulatedNode)if simulatedNodeIndex not in closedSet: # Check if simulated node is already in open set, if not add it open set as well as in priority queueif simulatedNodeIndex not in openSet:openSet[simulatedNodeIndex] = simulatedNodecostQueue[simulatedNodeIndex] = max(simulatedNode.cost , Cost.hybridCost * holonomicHeuristics[simulatedNode.gridIndex[0]][simulatedNode.gridIndex[1]])else:if simulatedNode.cost < openSet[simulatedNodeIndex].cost:openSet[simulatedNodeIndex] = simulatedNodecostQueue[simulatedNodeIndex] = max(simulatedNode.cost , Cost.hybridCost * holonomicHeuristics[simulatedNode.gridIndex[0]][simulatedNode.gridIndex[1]])

在这里插入图片描述

3.3 Matlab仿真

核心代码如下所示:

while ~isempty(Open)% pop the least cost node from open to close[wknode,Open] = PopNode(Open,cfg);[isok,idx] = inNodes(wknode,Close);if isokClose(idx) = wknode;elseClose = [Close, wknode];end[isok,path] = AnalysticExpantion([wknode.x,wknode.y,wknode.theta],End,veh,cfg);if  isokClose(end+1) = wknode;Close(idx) = [];[x,y,th,D,delta] = getFinalPath(path,Close,veh,cfg);breakend[Open,Close] = Update(wknode,Open,Close,veh,cfg); % 使用
end

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

这篇关于路径规划 | 详解混合A*算法Hybrid A*(附ROS C++/Python/Matlab仿真)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946036

相关文章

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Spring @RequestMapping 注解及使用技巧详解

《Spring@RequestMapping注解及使用技巧详解》@RequestMapping是SpringMVC中定义请求映射规则的核心注解,用于将HTTP请求映射到Controller处理方法... 目录一、核心作用二、关键参数说明三、快捷组合注解四、动态路径参数(@PathVariable)五、匹配请

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2