分布式与一致性协议之Raft算法(一)

2024-04-29 03:20

本文主要是介绍分布式与一致性协议之Raft算法(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Raft算法

概述

Raft算法属于Multi-Paxos算法,它在兰伯特Multi-Paxos思想的基础上做了一些简化和限制,比如日志必须是连续的,只支持领导者(Leader)、跟随者(Follwer)和候选人(Candidate)3种状态。在理解和算法实现上,Raft算法相对容易许多。
除此之外,Raft算法是现在分布式系统首选的共识算法。绝大多数选用Paxos算法的系统(比如Chubby、Spanner)都是在Raft算法发布前开发的,当时没有其他选择;而全新的系统大多选择了Raft算法(比如Etcd、Consul、CockroachDB)。
掌握了Raft算法,我们就可以得心应手地满足绝大部分场景的容错和一致性需求,比如分布式配置系统、分布式NoSQL存储等,轻松突破系统的单机限制。
如果要用一句话概括Raft算法,我觉得是这样的:从本质上说,Raft算法是通过一切以领导者为准的方式实现一系列值得共识和个节点日志的一致。这句话比较抽象,做个比喻:领导者就是Raft算法中的"霸道总裁",通过霸道的"一切以我为准"的方式。决定了日志中命令的值,也实现了个节点日志的一致。后面会以领导者选举、日志赋值、成员变更为核心,讲解Raft算法的原理。

在正式介绍之前,我们先来看一道思考题。
假设我们有一个由节点A、B、C组成的Raft集群(如图所示),因为Raft算法是一切以领导者为准,所以如果集群中出现了多个领导者,就会出现不知道谁来做主的问题。在这样一个有多个节点的集群中,在节点故障、分区容错等异常情况下,Raft算法应该如何保证在同一个时间内集群中只有一个领导者呢?
在这里插入图片描述

Raft是如何选举领导者的

既然要选举领导者,要从哪些成员中选举呢?除了领导者,Raft算法还支持哪些成员身份呢?这是需要掌握的最基础的背景知识。

有哪些成员身份

在这里插入图片描述

成员身份,又叫作服务器节点状态。Raft算法支持跟随者、候选人和领导者3种状态。为了方便理解,
我们使用不同的图形表示不同的状态,如图u宋史,在任何时候,每一个服务器节点都处于这3个状态中的其中1个

  • 1.跟随者:相当于普通群众,默默地接收和处理来自领导者的消息,当领导者心跳信息超时的时候,它会主动站出来,推荐自己当候选人

  • 2.候选人:候选人将向其他节点发送请求投票(RequestVote) RPC消息,通知其他节点来投票,如果它赢得了大多数选票,那么它将晋升为领导者

  • 3.领导者:一切以我为准,平常的主要工作包含三部分,处理写请求、管理日志复制和不断发送心跳信息,通知其他节点"我是领导者,你们现在不要发起新的选举,找个新领导者来替代我"

  • 需要注意的是,Raft算法是强领导者模型,集群中只能有一个"霸道总裁"。

选举领导者的过程

那么如何从3个成员中选出领导者呢?
首先,在初始状态下,集群中所有的节点都处于跟随者的状态,如图所示。
在这里插入图片描述

Raft算法实现了随机超时时间的特性。也就是说,每个节点等待领导者节点心跳信息的超时时间间隔是随机的。
通过上图可以看到,集群中没有领导者,而节点A的等待超时时间最小(150ms),所以它会最先因为没有等到领导者的心跳信息而超时。
这个时候,节点A会增加自己的任期编号,并推荐自己为候选人,先给自己投一张选票,然后先其他阶段发送请求投票RPC消息,请他们选举自己为领导者,如图所示在这里插入图片描述

如果其他节点接收到候选人A的请求投票RPC消息,且在编号为1的这届任期内,它也还没有投过票,那么它将把选票投给节点A,并增加自己的任期编号,如图所示。
在这里插入图片描述

如果候选人在选举超时时间内赢得了大多数选票,那么它就会成为本届任期内新的领导者,如图所示。在这里插入图片描述

节点A当选领导者后,将周期性的发送心跳消息,通知其他服务器"我是领导者",阻止跟随者发起新的选举、篡权。在这里插入图片描述

如图所示,看到这里,你是不是发现领导者选举很容易理解?它与现实中地议会选举也很类似?当然,你可能还是会对一些细节产生疑问,比如:

  • 1.节点间是如何通信地?
  • 2.什么是任期?
  • 3.选举有哪些规则
  • 4.随机超时时间又是什么

选举过程四连问

老话说,细节是魔鬼。这些细节也是大家在学习Raft算法时比较难掌握地,所以这里有必要具体分析一下。一步步来

节点间如何通信

在Raft算法中,服务器节点采用地沟通方式是远程过程调用(RPC),在领导者选举中,我们需要用到这样两类RPC:

  • 1.请求投票(RequestVote)RPC时由候选人在选举期间发起,通知各节点进行投票
  • 2.日志复制(AppendEntries)RPC是由领导者发起地,用来复制日志和提供心跳消息

需要注意的是,日志复制RPC只能由领导者发起,这是实现强领导者模型的关键之一,理解这一点有助于后续更好地理解日志复制,以及如何实现日志的一致

这篇关于分布式与一致性协议之Raft算法(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/944987

相关文章

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

基于MongoDB实现文件的分布式存储

《基于MongoDB实现文件的分布式存储》分布式文件存储的方案有很多,今天分享一个基于mongodb数据库来实现文件的存储,mongodb支持分布式部署,以此来实现文件的分布式存储,需要的朋友可以参考... 目录一、引言二、GridFS 原理剖析三、Spring Boot 集成 GridFS3.1 添加依赖

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Redis中的数据一致性问题以及解决方案

《Redis中的数据一致性问题以及解决方案》:本文主要介绍Redis中的数据一致性问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Redis 数据一致性问题的产生1. 单节点环境的一致性问题2. 网络分区和宕机3. 并发写入导致的脏数据4. 持

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

Gradle下如何搭建SpringCloud分布式环境

《Gradle下如何搭建SpringCloud分布式环境》:本文主要介绍Gradle下如何搭建SpringCloud分布式环境问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Gradle下搭建SpringCloud分布式环境1.idea配置好gradle2.创建一个空的gr

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka