代码随想录算法训练营第五十三天| 1143.最长公共子序列 ,1035.不相交的线,53. 最大子序和 动态规划

本文主要是介绍代码随想录算法训练营第五十三天| 1143.最长公共子序列 ,1035.不相交的线,53. 最大子序和 动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

1143.最长公共子序列

题目链接:1143.最长公共子序列

代码随想录题解:​​​​​​​1143.最长公共子序列

视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili

解题思路:

        一开始试图用四层循环暴力法来做,就超时了。

看完代码随想录之后的想法 

        这里主要是dp定义跟前面有点不一样,随之的递推公式也不一样。

        dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j],所以最后得到的公共子序列不一定要包含text1[i-1]和text2[i-1]。

        递推公式有两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

dp的第一行和第一列分别表示text1或text2和空字符串的最长公共子序列,必然初始化为0。

class Solution {public int longestCommonSubsequence(String text1, String text2) {int[][] dp = new int[text1.length()+1][text2.length()+1];int result = 0;for (int i = 1; i < text1.length()+1; i++) {for (int j = 1; j < text2.length()+1; j++) {if (text1.charAt(i-1) == text2.charAt(j-1)) {dp[i][j] = dp[i-1][j-1]+1;} else {dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);}result = Math.max(result, dp[i][j]);}}return result;}
}

遇到的困难

        序列和连续序列的计算会有很多不一样,子序列要考虑的可能性更多。

1035.不相交的线

题目链接:1035.不相交的线

代码随想录题解:​​​​​​​1035.不相交的线

视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线_哔哩哔哩_bilibili

解题思路:

        没有思路看答案。

看完代码随想录之后的想法 

        直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!        

class Solution {public int maxUncrossedLines(int[] nums1, int[] nums2) {int[][] dp = new int[nums1.length+1][nums2.length+1];int result = 0;for (int i = 1; i < nums1.length + 1; i++) {for (int j = 1; j < nums2.length + 1; j++) {if (nums1[i-1] == nums2[j-1]) {dp[i][j] = dp[i-1][j-1] + 1;} else {dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);}result = Math.max(result, dp[i][j]);}}return result;}
}

遇到的困难

        题目翻译成最大相同子序列有点困难。

53. 最大子序和

题目链接:​​​​​​​53. 最大子序和

代码随想录题解:53. 最大子序和

视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibili

解题思路:

        dp定义:对于nums[0]-nums[i]的序列,其子序列包含nums[i]时,最大子序和的值。

        递推公式:因为要求的是连续序列的和,所以可以根据dp[i-1]和nums[i]推出dp[i]的值。如果dp[i-1]+nums[i] > nums[i],说明nums[i]可以纳入dp[i-1]的子序列,dp[i]=dp[i-1]+nums[i] ,否则从nums[i]开始开启一个新的序列,dp[i]=nums[i]。

        初始化dp[0]为nums[0], 从前往后遍历即可。

class Solution {public int maxSubArray(int[] nums) {if (nums.length == 1) return nums[0];int[] dp = new int[nums.length];int result = nums[0];dp[0] = nums[0];for (int i = 1; i < nums.length; i++) {dp[i] = Math.max(nums[i], dp[i-1] + nums[i]);result = Math.max(result, dp[i]);}return result;}
}

看完代码随想录之后的想法 

        因为dp的依赖关系是只有前后两个相关,所以可以简化dp的空间占用。

//因为dp[i]的递推公式只与前一个值有关,所以可以用一个变量代替dp数组,空间复杂度为O(1)
class Solution {public int maxSubArray(int[] nums) {int res = nums[0];int pre = nums[0];for(int i = 1; i < nums.length; i++) {pre = Math.max(pre + nums[i], nums[i]);res = Math.max(res, pre);}return res;}
}

遇到的困难

        一开始result没有初始化为dp[0],而是初始化为Interger.MIN_VALUE,导致数组只有一个数字时返回的结果不对,还是要维持一下result的定义,提前初始化为dp[0]才对。

今日收获

        dp真是千变万化,思路需要非常清晰了。子序列的题目有点难。

这篇关于代码随想录算法训练营第五十三天| 1143.最长公共子序列 ,1035.不相交的线,53. 最大子序和 动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/944984

相关文章

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Spring Security介绍及配置实现代码

《SpringSecurity介绍及配置实现代码》SpringSecurity是一个功能强大的Java安全框架,它提供了全面的安全认证(Authentication)和授权(Authorizatio... 目录简介Spring Security配置配置实现代码简介Spring Security是一个功能强

通过cmd获取网卡速率的代码

《通过cmd获取网卡速率的代码》今天从群里看到通过bat获取网卡速率两段代码,感觉还不错,学习bat的朋友可以参考一下... 1、本机有线网卡支持的最高速度:%v%@echo off & setlocal enabledelayedexpansionecho 代码开始echo 65001编码获取: >

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

Kotlin Compose Button 实现长按监听并实现动画效果(完整代码)

《KotlinComposeButton实现长按监听并实现动画效果(完整代码)》想要实现长按按钮开始录音,松开发送的功能,因此为了实现这些功能就需要自己写一个Button来解决问题,下面小编给大... 目录Button 实现原理1. Surface 的作用(关键)2. InteractionSource3.