tfrecord文件介绍、读取、写入介绍

2024-04-29 02:52
文章标签 读取 介绍 写入 tfrecord

本文主要是介绍tfrecord文件介绍、读取、写入介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、tfrecord文件格式介绍

       tfrecord文件格式,是深度学习框架tensorflow专用的一种文件格式,其底层使用protobuf,TensorFlow(python)也提供了api用于读取和写入tfrecord,非常方便,而对于golang语言,目前没有成熟的包可以使用,调研过一个nivida的开源库,这个库已经三四年没有更新,在读取tfrecord上存在问题,所以go语言,至今没有找到合适的包可以操作tfrecord。

       一个tfrecord文件是有多个example组成,一个example是有多个key-value对构成的结构:

2、tfrecord文件操作

测试环境:

python:3.8

TensorFlow:2.13

系统:Ubuntu2004

2.1 生成tfrecord

#!/usr/bin/python3.10
import tensorflow as tf
import numpy as npdef _bytes_feature(value):if isinstance(value, type(tf.constant(0))):value = value.numpy() return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))def _float_feature(value):return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))def _int64_feature(value):return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))def _int64_list_feature(value):return tf.train.Feature(int64_list=tf.train.Int64List(value=value))def _bytes_list_feature(value):return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value.astype(np.float32).tobytes()]))def serialize_example(f0, f1, f2, f3, f4):features = {'a': _int64_feature(f0),'b': _int64_list_feature(f1),'c': _bytes_feature(f2),'d': _float_feature(f3),'e': _bytes_list_feature(f4)}example_proto = tf.train.Example(features=tf.train.Features(feature=features))return example_proto.SerializeToString()def main():filename = 'tf.tfrecord'with tf.io.TFRecordWriter(filename) as writer:for i in range(10):example = serialize_example(1, [1, 1, 9], b'tfrecord', 1.4, np.array([1, 2, 3]))writer.write(example)if __name__ == '__main__':main()

上面代码共写了10个example到文件里,运行上面 代码之前,需要安装tensorflow:

TensorFlow安装完成后,运行上面python代码:

执行完成后,生成tf.tfrecord文件,下面我们会尝试读取一下生成的这个文件。

2.2 读取tfrecord

上面2.1生成了一个tfrecord文件,我们就来读取这个文件,首先这个tfrecord一共包含10个example,每个example包含5个key,可以对照第一章节的图示进行理解,读取代码如下:

#!/usr/bin/python3.10
import tensorflow as tf
import numpy as npfeature_desc = {'a': tf.io.FixedLenFeature((), tf.int64, default_value=0),'b': tf.io.FixedLenFeature((3), tf.int64, default_value=[-1, -1, -1]),'c': tf.io.FixedLenFeature((), tf.string, default_value=''),'d': tf.io.FixedLenFeature((), tf.float32, default_value=0.0),'e': tf.io.FixedLenFeature((), tf.string)
}def main():filename = '/root/python/tfrecord/tf.tfrecord'examples = tf.data.TFRecordDataset(filename)for example in examples:feature = tf.io.parse_single_example(example, feature_desc)print('a=', feature['a'].numpy())print('b=', feature['b'].numpy())print('c=', feature['c'].numpy().decode('utf-8'))print('d=', feature['d'].numpy())print('e=', tf.io.decode_raw(feature['e'], tf.float32))if __name__ == '__main__':main()

代码运行结果:

3、获取tfrecord文件特征属性

当某些时候,我们不知道tfrecord的特征属性时,也就是不知道文件里的feature格式时,我们可以用下面的方法将feature的key值、value等信息打印出来:

#!/usr/bin/python3.10
import tensorflow as tf
import numpy as npdef getTFRecordFormat(files):  # 加载TFRecord数据  ds = tf.data.TFRecordDataset(files)  ds = ds.batch(1)  ds = ds.prefetch(buffer_size=tf.data.AUTOTUNE)  for batch_data in ds.take(1):  for serialized_example in batch_data:  example_proto = tf.train.Example.FromString(serialized_example.numpy())  for key, feature in example_proto.features.feature.items():  ftype = None  fvalue = None  if feature.HasField('bytes_list'):  ftype = 'bytes_list'  fvalue = (feature.bytes_list.value)  elif feature.HasField('float_list'):  ftype = 'float_list'  fvalue = (feature.float_list.value)  elif feature.HasField('int64_list'):  ftype = 'int64_list'  fvalue = (feature.int64_list.value)  if ftype:  result = '{0} : {1} {2}'.format(key, ftype, fvalue)  print(result)  def main():filename = '/root/python/tfrecord/tf.tfrecord'getTFRecordFormat(filename)
if __name__ == '__main__':main()

代码运行记录:

4、为什么使用tfrecord

     TFRecord文件格式在机器学习和深度学习应用中具有多个优势,这也是为什么它被广泛采用的原因。以下是TFRecord文件格式的主要优点:

  • 高效的数据存储与读取:TFRecord使用二进制格式来存储数据,相比于文本格式(如CSV或JSON),它更加紧凑,因此可以节省存储空间。此外,二进制格式的数据读取速度也更快,这对于大规模数据集的训练和推理过程尤为重要。
  • 多样化的数据类型支持:TFRecord可以支持多种数据类型,包括整数、浮点数、字符串等,这使得它非常适合存储各种类型的训练数据。无论是图像、文本还是其他类型的数据,都可以方便地存储为TFRecord格式。
  • 方便的数据预处理:通过将数据转换为TFRecord格式,可以方便地进行数据预处理操作,如数据增强、归一化等。这些操作可以在数据加载阶段进行,从而避免了在训练过程中重复进行预处理,提高了训练效率。
  • 易于扩展与并行处理:TFRecord文件可以轻松地扩展以适应更大的数据集。此外,由于其紧凑的二进制格式和高效的数据读取机制,TFRecord文件也支持并行处理,可以充分利用多核CPU或GPU的并行计算能力。
  • 跨平台兼容性:TFRecord文件使用Protocol Buffers进行编码,这是一种跨平台的序列化结构数据格式。因此,TFRecord文件可以在不同的操作系统和编程环境中使用,具有良好的兼容性。

综上所述,TFRecord文件格式在机器学习和深度学习中具有高效、灵活、易于扩展和跨平台兼容等优点,使得它成为处理大规模数据集的首选格式之一。

这篇关于tfrecord文件介绍、读取、写入介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944935

相关文章

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe