tfrecord文件介绍、读取、写入介绍

2024-04-29 02:52
文章标签 读取 介绍 写入 tfrecord

本文主要是介绍tfrecord文件介绍、读取、写入介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、tfrecord文件格式介绍

       tfrecord文件格式,是深度学习框架tensorflow专用的一种文件格式,其底层使用protobuf,TensorFlow(python)也提供了api用于读取和写入tfrecord,非常方便,而对于golang语言,目前没有成熟的包可以使用,调研过一个nivida的开源库,这个库已经三四年没有更新,在读取tfrecord上存在问题,所以go语言,至今没有找到合适的包可以操作tfrecord。

       一个tfrecord文件是有多个example组成,一个example是有多个key-value对构成的结构:

2、tfrecord文件操作

测试环境:

python:3.8

TensorFlow:2.13

系统:Ubuntu2004

2.1 生成tfrecord

#!/usr/bin/python3.10
import tensorflow as tf
import numpy as npdef _bytes_feature(value):if isinstance(value, type(tf.constant(0))):value = value.numpy() return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))def _float_feature(value):return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))def _int64_feature(value):return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))def _int64_list_feature(value):return tf.train.Feature(int64_list=tf.train.Int64List(value=value))def _bytes_list_feature(value):return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value.astype(np.float32).tobytes()]))def serialize_example(f0, f1, f2, f3, f4):features = {'a': _int64_feature(f0),'b': _int64_list_feature(f1),'c': _bytes_feature(f2),'d': _float_feature(f3),'e': _bytes_list_feature(f4)}example_proto = tf.train.Example(features=tf.train.Features(feature=features))return example_proto.SerializeToString()def main():filename = 'tf.tfrecord'with tf.io.TFRecordWriter(filename) as writer:for i in range(10):example = serialize_example(1, [1, 1, 9], b'tfrecord', 1.4, np.array([1, 2, 3]))writer.write(example)if __name__ == '__main__':main()

上面代码共写了10个example到文件里,运行上面 代码之前,需要安装tensorflow:

TensorFlow安装完成后,运行上面python代码:

执行完成后,生成tf.tfrecord文件,下面我们会尝试读取一下生成的这个文件。

2.2 读取tfrecord

上面2.1生成了一个tfrecord文件,我们就来读取这个文件,首先这个tfrecord一共包含10个example,每个example包含5个key,可以对照第一章节的图示进行理解,读取代码如下:

#!/usr/bin/python3.10
import tensorflow as tf
import numpy as npfeature_desc = {'a': tf.io.FixedLenFeature((), tf.int64, default_value=0),'b': tf.io.FixedLenFeature((3), tf.int64, default_value=[-1, -1, -1]),'c': tf.io.FixedLenFeature((), tf.string, default_value=''),'d': tf.io.FixedLenFeature((), tf.float32, default_value=0.0),'e': tf.io.FixedLenFeature((), tf.string)
}def main():filename = '/root/python/tfrecord/tf.tfrecord'examples = tf.data.TFRecordDataset(filename)for example in examples:feature = tf.io.parse_single_example(example, feature_desc)print('a=', feature['a'].numpy())print('b=', feature['b'].numpy())print('c=', feature['c'].numpy().decode('utf-8'))print('d=', feature['d'].numpy())print('e=', tf.io.decode_raw(feature['e'], tf.float32))if __name__ == '__main__':main()

代码运行结果:

3、获取tfrecord文件特征属性

当某些时候,我们不知道tfrecord的特征属性时,也就是不知道文件里的feature格式时,我们可以用下面的方法将feature的key值、value等信息打印出来:

#!/usr/bin/python3.10
import tensorflow as tf
import numpy as npdef getTFRecordFormat(files):  # 加载TFRecord数据  ds = tf.data.TFRecordDataset(files)  ds = ds.batch(1)  ds = ds.prefetch(buffer_size=tf.data.AUTOTUNE)  for batch_data in ds.take(1):  for serialized_example in batch_data:  example_proto = tf.train.Example.FromString(serialized_example.numpy())  for key, feature in example_proto.features.feature.items():  ftype = None  fvalue = None  if feature.HasField('bytes_list'):  ftype = 'bytes_list'  fvalue = (feature.bytes_list.value)  elif feature.HasField('float_list'):  ftype = 'float_list'  fvalue = (feature.float_list.value)  elif feature.HasField('int64_list'):  ftype = 'int64_list'  fvalue = (feature.int64_list.value)  if ftype:  result = '{0} : {1} {2}'.format(key, ftype, fvalue)  print(result)  def main():filename = '/root/python/tfrecord/tf.tfrecord'getTFRecordFormat(filename)
if __name__ == '__main__':main()

代码运行记录:

4、为什么使用tfrecord

     TFRecord文件格式在机器学习和深度学习应用中具有多个优势,这也是为什么它被广泛采用的原因。以下是TFRecord文件格式的主要优点:

  • 高效的数据存储与读取:TFRecord使用二进制格式来存储数据,相比于文本格式(如CSV或JSON),它更加紧凑,因此可以节省存储空间。此外,二进制格式的数据读取速度也更快,这对于大规模数据集的训练和推理过程尤为重要。
  • 多样化的数据类型支持:TFRecord可以支持多种数据类型,包括整数、浮点数、字符串等,这使得它非常适合存储各种类型的训练数据。无论是图像、文本还是其他类型的数据,都可以方便地存储为TFRecord格式。
  • 方便的数据预处理:通过将数据转换为TFRecord格式,可以方便地进行数据预处理操作,如数据增强、归一化等。这些操作可以在数据加载阶段进行,从而避免了在训练过程中重复进行预处理,提高了训练效率。
  • 易于扩展与并行处理:TFRecord文件可以轻松地扩展以适应更大的数据集。此外,由于其紧凑的二进制格式和高效的数据读取机制,TFRecord文件也支持并行处理,可以充分利用多核CPU或GPU的并行计算能力。
  • 跨平台兼容性:TFRecord文件使用Protocol Buffers进行编码,这是一种跨平台的序列化结构数据格式。因此,TFRecord文件可以在不同的操作系统和编程环境中使用,具有良好的兼容性。

综上所述,TFRecord文件格式在机器学习和深度学习中具有高效、灵活、易于扩展和跨平台兼容等优点,使得它成为处理大规模数据集的首选格式之一。

这篇关于tfrecord文件介绍、读取、写入介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944935

相关文章

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu