基于大爆炸优化算法的PID控制器参数寻优matlab仿真

2024-04-28 17:04

本文主要是介绍基于大爆炸优化算法的PID控制器参数寻优matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

基于大爆炸优化算法的PID控制器参数寻优matlab仿真。对比优化前后的PID控制输出。

2.系统仿真结果

3.核心程序与模型

版本:MATLAB2022a

..............................................................................
steps=range0;
it=1;
while steps>=range2% 输出迭代信息it% 生成新种群for i=1:Npopx(:, i)=Goodpid+2*(rand(dim, 1)-0.5).*steps;% 确保新个体在有效搜索范围内ind=find(x(:, i)<vmin);x(ind, i)=vmin(ind);ind=find(x(:, i)>vmax);x(ind, i)=vmax(ind);end% 计算新种群适应度fhd   = str2func(Fobj);fvals = feval(fhd, x);% 更新最优个体与最优性能指标if min(fvals)<fminfmin    = min(fvals);ind     = find(fvals==min(fvals));ind     = min(ind);Goodpid = x(:, ind);endsteps  = steps-steps*range3;Nrange = norm(steps);it=it+1;kps(it)=Goodpid(1);kis(it)=Goodpid(2);kds(it)=Goodpid(3);endfigure;
plot(kps)
hold on
plot(kis)
hold on
plot(kds)
grid on
legend('kp','ki','kd');% 输出并保存最优PID参数
disp('优化后');
Kp=Goodpid(1)
Ki=Goodpid(2)
Kd=Goodpid(3)
disp('优化前');
Kp0=kps(2)
Ki0=kis(2)
Kd0=kds(2)save PID.mat Kp Ki Kd Kp0 Ki0 Kd0
51

4.系统原理简介

       大爆炸优化算法(Big Bang-Big Crunch,BB-BC)是一种受宇宙大爆炸理论启发而提出的全局优化方法。它模仿了宇宙从奇点出发经历快速膨胀(Big Bang)、收缩(Big Crunch)以及再次膨胀等过程,在搜索空间中进行迭代以期找到全局最优解。这种方法特别适用于PID控制器参数的寻优问题,通过寻优使得PID控制器性能指标(如ITAE、ISE、ISSE等)达到最优。

       在PID控制器中,其输出u(t)由比例P、积分I和微分D三个部分组成:

       u(t) = K_P * e(t) + K_I * ∫e(t)dt + K_D * de(t)/dt

       其中,K_P、K_I和K_D分别代表比例增益、积分时间常数和微分时间常数,e(t)是误差信号,即设定值与实际值之差。

        大爆炸优化算法可以在全局范围内有效地寻优PID控制器参数,从而提高控制系统的动态性能和稳定性。

5.完整工程文件

v

v

这篇关于基于大爆炸优化算法的PID控制器参数寻优matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943783

相关文章

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题