R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题

本文主要是介绍R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入

GEO DataSets上,某些Series是由多个series组成的,比如GSE6834,由六个Series组成:

This SuperSeries is composed of the following SubSeries:
Less… Less…
GSE6771 Temporal Cortex Control (mesial temporal lobe epilepsy control)
GSE6773 Temporal neocortex mesial temporal lobe epilepsy
GSE6774 Temporal Cortex Control (Alzheimer’s disease control)
GSE6774 Temporal Cortex Alzheimer’s Disease
GSE6777 Cerebellum Alzheimer’s Disease
GSE6778 Cerebellum Control (Alzheimer’s disease control)

每个Series又包括10个GSM,要知道一般都是实验组对照组在同一个矩阵中才能进行差异表达分析。那么举个例子,GSE6774和GSE6774,一个对照一个实验,两个矩阵怎么分析呢?

txt转为xlsx

很多人第一反应可能是将两个TXT合二为一,这样做可以,尤其是多个Series,这样还可以利用批处理减轻工作量,但是中间涉及到对齐、插入制表符等问题,很可能出错。不如借助Excel,直接在Excel中复制粘贴即可完成(Series比较少的话)。首先将txt转为xlsx,利用Java或者Python等脚本都可以完成,下面给出Python版的:

# coding=utf-8
import xlsxwriter
import pandas as pdworkbook = xlsxwriter.Workbook(r'D:\Alzheimer\Series\GSE6834\6780.xlsx') 
worksheet= workbook.add_worksheet(u'matrix')
txt=open(r'D:\Alzheimer\Series\GSE6834\6778.txt')m=0
n=0for m in range(1,8690):print(m);line=txt.readline()data=line.split('\t')for n in range(1,11):worksheet.write(m-1,n-1,data[n-1])worksheet.write(m-1,10,data[10][0:-1]) workbook.close()

注意worksheet.write(m-1,10,data[10][0:-1])这一行,由于每个数据带一个\t,但每一行最后一个还额外多一个\n,所以这一个\n要特殊处理。
转化为TXT后,直接复制粘贴便可合二为一。

在这里插入图片描述

xlsx到R中的数据框

xlsx做好了,怎么将其变成我们需要的数据框呢?
思路一:将其转化为txt,也就是再变回去。但是转化时,需要加入\t, \n等符号,也是比较麻烦,容易出错。
思路二:在R中直接用readxl包导入xlsx为数据框。乍一看貌似这个方法最简单,但是有一个问题:xlsx里的数据是文本格式,不能直接用于数据分析。否则,就会出现报错:

> fit=lmFit(exp_matrix, design)
Error in rowMeans(y$exprs, na.rm = TRUE) : 'x' must be numeric

要想批量将Excel中文本格式的数字转化成数字格式,一般的办法是转成csv,然后再转回来。不过,既然转成csv了,不如直接用R导入就可以了。
思路三:将xlsx转成csv,然后用read.csv()导入。
导入之后观察实验矩阵:在这里插入图片描述
发现数据框第一列居然是探针名字,而不是想象中探针名字作为数据框的行名。所以我们还需要一步,修改下这个数据框。

更改数据框行名(rownames)

首先,我们需要知道更改数据框行名的函数是row.names()。这个函数的参数是向量,所以我们需要把数据框第一列转化成向量;如果直接将数据框或者矩阵作为行名会报错Error in `.rowNamesDF<-`(x, value = value) : 'row.names'的长度不对。那么,数据框怎么转化为向量呢?中间必要的一步是矩阵。所以正确的方法是连续用两个函数as.matrix()as.vector()
另外我们还需要将第一列删除,注意删除是在赋rownames之前,否则刚刚赋好的rownames也会被删除!
这一部分代码如下:

m=as.matrix(exp_matrix[, 1])
v=as.vector(m)
exp_matrix<-exp_matrix[, -1]
row.names(exp_matrix) <- v

处理后的数据框如下:在这里插入图片描述

差异表达分析

最后贴一下这个例子中,从导入到差异表达分析的全过程:

library("reshape2")
library("hgu133plus2.db")
library("limma")setwd("D:/Alzheimer/Series/GSE6834")exp_matrix<-read.csv("6774&6775.csv",header = TRUE)
m=as.matrix(exp_matrix[, 1])
v=as.vector(m)
exp_matrix<-exp_matrix[, -1]
row.names(exp_matrix) <- v#TC_Control	Temporal Cortex Control (AD)
#TC_AD Temporal Cortex Alzheimer's disease
type <-c('TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD')
design <- model.matrix(~ -1+factor(type,levels=c('TC_Control','TC_AD'),ordered=TRUE)) 
colnames(design) <- c('TC_Control','TC_AD')
rownames(design)=colnames(exp_matrix)fit=lmFit(exp_matrix, design)contrast.matrix=makeContrasts(TC_ControlVSTC_AD=TC_Control-TC_AD,levels=design) 
fit2 = contrasts.fit(fit, contrast.matrix) 
fit2 = eBayes(fit2)
results <- decideTests(fit2) 
vennDiagram(results)diff1 = topTreat(fit2, coef=1,p.value=0.05, n=Inf, adjust.method='BH')write.table(diff1, "diff.TC_ControlVSTC_AD.GSE6834.txt",sep = '\t',quote = F)

这篇关于R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943736

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的