R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题

本文主要是介绍R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入

GEO DataSets上,某些Series是由多个series组成的,比如GSE6834,由六个Series组成:

This SuperSeries is composed of the following SubSeries:
Less… Less…
GSE6771 Temporal Cortex Control (mesial temporal lobe epilepsy control)
GSE6773 Temporal neocortex mesial temporal lobe epilepsy
GSE6774 Temporal Cortex Control (Alzheimer’s disease control)
GSE6774 Temporal Cortex Alzheimer’s Disease
GSE6777 Cerebellum Alzheimer’s Disease
GSE6778 Cerebellum Control (Alzheimer’s disease control)

每个Series又包括10个GSM,要知道一般都是实验组对照组在同一个矩阵中才能进行差异表达分析。那么举个例子,GSE6774和GSE6774,一个对照一个实验,两个矩阵怎么分析呢?

txt转为xlsx

很多人第一反应可能是将两个TXT合二为一,这样做可以,尤其是多个Series,这样还可以利用批处理减轻工作量,但是中间涉及到对齐、插入制表符等问题,很可能出错。不如借助Excel,直接在Excel中复制粘贴即可完成(Series比较少的话)。首先将txt转为xlsx,利用Java或者Python等脚本都可以完成,下面给出Python版的:

# coding=utf-8
import xlsxwriter
import pandas as pdworkbook = xlsxwriter.Workbook(r'D:\Alzheimer\Series\GSE6834\6780.xlsx') 
worksheet= workbook.add_worksheet(u'matrix')
txt=open(r'D:\Alzheimer\Series\GSE6834\6778.txt')m=0
n=0for m in range(1,8690):print(m);line=txt.readline()data=line.split('\t')for n in range(1,11):worksheet.write(m-1,n-1,data[n-1])worksheet.write(m-1,10,data[10][0:-1]) workbook.close()

注意worksheet.write(m-1,10,data[10][0:-1])这一行,由于每个数据带一个\t,但每一行最后一个还额外多一个\n,所以这一个\n要特殊处理。
转化为TXT后,直接复制粘贴便可合二为一。

在这里插入图片描述

xlsx到R中的数据框

xlsx做好了,怎么将其变成我们需要的数据框呢?
思路一:将其转化为txt,也就是再变回去。但是转化时,需要加入\t, \n等符号,也是比较麻烦,容易出错。
思路二:在R中直接用readxl包导入xlsx为数据框。乍一看貌似这个方法最简单,但是有一个问题:xlsx里的数据是文本格式,不能直接用于数据分析。否则,就会出现报错:

> fit=lmFit(exp_matrix, design)
Error in rowMeans(y$exprs, na.rm = TRUE) : 'x' must be numeric

要想批量将Excel中文本格式的数字转化成数字格式,一般的办法是转成csv,然后再转回来。不过,既然转成csv了,不如直接用R导入就可以了。
思路三:将xlsx转成csv,然后用read.csv()导入。
导入之后观察实验矩阵:在这里插入图片描述
发现数据框第一列居然是探针名字,而不是想象中探针名字作为数据框的行名。所以我们还需要一步,修改下这个数据框。

更改数据框行名(rownames)

首先,我们需要知道更改数据框行名的函数是row.names()。这个函数的参数是向量,所以我们需要把数据框第一列转化成向量;如果直接将数据框或者矩阵作为行名会报错Error in `.rowNamesDF<-`(x, value = value) : 'row.names'的长度不对。那么,数据框怎么转化为向量呢?中间必要的一步是矩阵。所以正确的方法是连续用两个函数as.matrix()as.vector()
另外我们还需要将第一列删除,注意删除是在赋rownames之前,否则刚刚赋好的rownames也会被删除!
这一部分代码如下:

m=as.matrix(exp_matrix[, 1])
v=as.vector(m)
exp_matrix<-exp_matrix[, -1]
row.names(exp_matrix) <- v

处理后的数据框如下:在这里插入图片描述

差异表达分析

最后贴一下这个例子中,从导入到差异表达分析的全过程:

library("reshape2")
library("hgu133plus2.db")
library("limma")setwd("D:/Alzheimer/Series/GSE6834")exp_matrix<-read.csv("6774&6775.csv",header = TRUE)
m=as.matrix(exp_matrix[, 1])
v=as.vector(m)
exp_matrix<-exp_matrix[, -1]
row.names(exp_matrix) <- v#TC_Control	Temporal Cortex Control (AD)
#TC_AD Temporal Cortex Alzheimer's disease
type <-c('TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD')
design <- model.matrix(~ -1+factor(type,levels=c('TC_Control','TC_AD'),ordered=TRUE)) 
colnames(design) <- c('TC_Control','TC_AD')
rownames(design)=colnames(exp_matrix)fit=lmFit(exp_matrix, design)contrast.matrix=makeContrasts(TC_ControlVSTC_AD=TC_Control-TC_AD,levels=design) 
fit2 = contrasts.fit(fit, contrast.matrix) 
fit2 = eBayes(fit2)
results <- decideTests(fit2) 
vennDiagram(results)diff1 = topTreat(fit2, coef=1,p.value=0.05, n=Inf, adjust.method='BH')write.table(diff1, "diff.TC_ControlVSTC_AD.GSE6834.txt",sep = '\t',quote = F)

这篇关于R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943736

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了