python笔记:gensim进行LDA

2024-04-28 15:28
文章标签 python 进行 笔记 lda gensim

本文主要是介绍python笔记:gensim进行LDA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论部分:NLP 笔记:Latent Dirichlet Allocation (介绍篇)-CSDN博客

参考内容:DengYangyong/LDA_gensim: 用gensim训练LDA模型,进行新闻文本主题分析 (github.com)

1 导入库

import jieba,os,re
from gensim import corpora, models, similarities

2 创建停用词列表

stopwords = [line.strip() for line in open('./stopwords.txt',encoding='UTF-8').readlines()]
stopwords

3 对句子进行中文分词(的函数)

def seg_depart(sentence):sentence_depart = jieba.cut(sentence.strip())#使用jieba进行中文分词stopwords = stopwordslist()outstr = ''for word in sentence_depart:if word not in stopwords:#如果不在停用词里面,则将分的词写入输入字符串中outstr += wordoutstr += " "    return outstr

4 对文档进行分词

原文档(cnews.train.txt):

"""如果文档还没分词,就进行分词"""
if not os.path.exists('./cnews.train_jieba.txt'):# 给出文档路径filename = "./cnews.train.txt"outfilename = "./cnews.train_jieba.txt"inputs = open(filename, 'r', encoding='UTF-8')outputs = open(outfilename, 'w', encoding='UTF-8')for line in inputs:line = line.split('\t')[1]'''使用制表符分割行,并取第二部分第一部分是新闻的主题'''line = re.sub(r'[^\u4e00-\u9fa5]+','',line)#使用正则表达式删除所有非中文字符,只保留中文line_seg = seg_depart(line.strip())#对剩下的中文行进行分词outputs.write(line_seg.strip() + '\n')#写入文档中outputs.close()inputs.close()

output file是:

5 准备训练语料库

"""准备好训练语料,整理成gensim需要的输入格式"""
fr = open('./cnews.train_jieba.txt', 'r',encoding='utf-8')
train = []
for line in fr.readlines():line = [word.strip() for word in line.split(' ')]train.append(line)
train

dictionary = corpora.Dictionary(train)
'''
使用 train 数据来创建一个 Dictionary 对象这个词典是一个从单词到单词ID的映射,每个单词都会被赋予一个唯一的ID
'''corpus = [dictionary.doc2bow(text) for text in train]
'''
遍历 train 数据集中的每个文档使用 doc2bow 方法将每条新闻转换为词袋模型(Bag-of-Words)每个元素是新闻中的每个词语,在字典中的ID和频率'''
corpus

6 创建LDA

lda = models.LdaModel(corpus=corpus, id2word=dictionary, num_topics=10)
'''
创建了一个 LdaModel 对象
使用前面生成的语料库 corpus 和词典 dictionary 进行训练
num_topics=10 表示要从数据中提取的主题数量
'''

7 获取topic list

topic_list = lda.print_topics(10)
topic_list
'''
[(0,'0.073*"基金" + 0.015*"公司" + 0.013*"投资" + 0.011*"市场" + 0.010*"中" + 0.009*"股票" + 0.006*"行业" + 0.006*"经理" + 0.006*"经济" + 0.006*"中国"'),(1,'0.008*"基金" + 0.007*"数码相机" + 0.006*"市场" + 0.006*"中" + 0.005*"产品" + 0.005*"元" + 0.004*"万" + 0.004*"信息" + 0.004*"账户" + 0.004*"性能"'),(2,'0.005*"活动" + 0.005*"设计" + 0.005*"中" + 0.004*"拍摄" + 0.003*"市场" + 0.003*"中国" + 0.003*"公司" + 0.003*"数码" + 0.003*"商家" + 0.003*"视频"'),(3,'0.016*"分红" + 0.015*"机身" + 0.012*"考试" + 0.006*"市场" + 0.006*"中" + 0.006*"英寸" + 0.004*"元" + 0.004*"采用" + 0.004*"公司" + 0.004*"基金"'),(4,'0.004*"中" + 0.003*"搭配" + 0.003*"设计" + 0.002*"比赛" + 0.002*"小巧" + 0.002*"时尚" + 0.002*"元" + 0.002*"房地产" + 0.002*"黑色" + 0.002*"市场"'),(5,'0.056*"基金" + 0.012*"赎回" + 0.007*"分红" + 0.005*"市场" + 0.005*"中" + 0.005*"元" + 0.004*"收益" + 0.004*"影像" + 0.004*"投资者" + 0.004*"公司"'),(6,'0.007*"中" + 0.006*"拍摄" + 0.004*"功能" + 0.004*"中国" + 0.004*"支持" + 0.003*"能力" + 0.003*"照片" + 0.003*"发展" + 0.003*"快门" + 0.003*"四级"'),(7,'0.005*"搭配" + 0.004*"中" + 0.004*"纽曼" + 0.004*"时尚" + 0.003*"穿" + 0.003*"中国" + 0.002*"市场" + 0.002*"性感" + 0.002*"黑色" + 0.002*"拍摄"'),(8,'0.011*"功能" + 0.009*"中" + 0.008*"采用" + 0.008*"玩家" + 0.008*"拍摄" + 0.007*"相机" + 0.006*"万" + 0.006*"支持" + 0.005*"镜头" + 0.005*"新"'),(9,'0.007*"说" + 0.006*"英语" + 0.006*"中" + 0.006*"时间" + 0.005*"做" + 0.004*"四级" + 0.003*"句子" + 0.003*"设计" + 0.002*"题" + 0.002*"信息"')]
'''

8 每个新闻的主题分布和主要主题

for document in corpus:#print(document)doc_topics = lda.get_document_topics(document)print(doc_topics)most_probable_topic = max(doc_topics, key=lambda x: x[1])print("Most Probable Topic: Topic ID:", most_probable_topic[0], "with probability", most_probable_topic[1])
'''
[(4, 0.9862377)]
Most Probable Topic: Topic ID: 4 with probability 0.9862377
[(2, 0.17439426), (3, 0.11908359), (4, 0.1178159), (6, 0.243781), (9, 0.342713)]
Most Probable Topic: Topic ID: 9 with probability 0.342713
[(3, 0.043999113), (4, 0.80878687), (6, 0.023567822), (9, 0.12172426)]
Most Probable Topic: Topic ID: 4 with probability 0.80878687
[(1, 0.40913466), (7, 0.33063287), (8, 0.25087485)]
Most Probable Topic: Topic ID: 1 with probability 0.40913466
[(3, 0.5576278), (7, 0.06341313), (9, 0.3749383)]
'''

这篇关于python笔记:gensim进行LDA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943597

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰