Java高阶私房菜:JVM垃圾回收机制及算法原理探究

2024-04-28 14:44

本文主要是介绍Java高阶私房菜:JVM垃圾回收机制及算法原理探究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

垃圾回收机制

什么是垃圾回收机制

JVM的自动垃圾回收机制

垃圾回收机制的关键知识点

初步了解判断方法-引用计数法

GCRoot和可达性分析算法

什么是可达性分析算法

什么是GC Root

对象回收的关键知识点

标记对象可回收就一定会被回收吗?

可达性分析算法为什么可以解决循环引用造成的内存泄漏问题?

​编辑

垃圾回收算法

标记-清除算法原理

标记-复制算法原理

标记-整理-压缩算法原理

几种算法对比


        本文主要讲解了什么是垃圾回收机制,进而了解它的底层架构原理,到核心的几种垃圾回收算法,逐步延申到它的应用场景和启发。

垃圾回收机制

什么是垃圾回收机制

        垃圾回收机制(Garbage Collection, 简称GC) 指自动管理动态分配的内存空间的机制,自动回收不再使用的内存,以避免内存泄漏和内存溢出的问题。

        最早是在1960年代提出的,程序员需要手动管理内存的分配和释放,这往往会导致内存泄漏和内存溢出等问题,同时也增加了程序员的工作量,特别是C++/C语言开发的时候,Java语言是最早实现垃圾回收机制的语言之一,其他编程语言,如C#、Python和Ruby等,也都提供了垃圾回收机制。

JVM的自动垃圾回收机制

        指Java虚拟机在运行Java程序时,自动回收不再使用的对象所占用的内存空间的过程。Java程序中的对象,一旦不再被引用会被标记为垃圾对象,JVM会在适当的时候自动回收这些垃圾对象所占用的内存空间。

其优点在于

  • 减少了开发人员的工作量,不需要手动管理内存;

  • 动态地管理内存,根据应用程序的需要进行分配和回收,提高了内存利用率;

  • 避免内存泄漏和野指针等问题,增加程序的稳定性和可靠;

缺点在于

  • 垃圾回收会占用一定的系统资源,可能会影响程序的性能;

  • 垃圾回收过程中会停止程序的执行,可能会导致程序出现卡顿等问题;

  • 不一定能够完全解决内存泄漏等问题,需要在编写代码时注意内存管理和编码规范;

垃圾回收机制的关键知识点

        垃圾回收机制需要判断哪些对象需要回收?即如何判读判断对象存活。其方法包括了有引用计数法可达性分析算法(JVM采用)。

        如何针对性进行回收?其收集死亡对象方法主要有三种,有标记-清除算法、标记-复制算法和标记-整理算法。每个中算法所针对的场景都不一样,没有最优解,只有最合适。

        了解垃圾回收算法和垃圾收集器的关系?两者没有可比性,是承先启后的关系,垃圾回收算法是垃圾回收的方法论,而垃圾收集器是算法的落地实现

初步了解判断方法-引用计数法

        简而言之就是跟踪每个对象被引用的次数,当引用次数为0时,就可以将该对象回收。在JVM中,每个对象都有一个引用计数器,当对象被引用时,引用计数器+1,当对象被取消引用时,引用计数器-1,当引用计数器为0时,该对象就可以被回收。

        其优点在于实现简单,回收垃圾的效率高。但缺点也显而易见循环引用无法回收。如果两个对象互相引用,它们的引用计数器永远不会为0,因此无法真正被回收,而且引用计数器开销大,每个对象都需要一个引用计数器,如果对象很多,开销就会很大。

什么是循环引用

public class Main {public static void main(String[] args) {A a = new A();B b = new B();a.setB(b);b.setA(a);a = null;b = null;System.gc();}
}class A {private B b;public void setB(B b) {this.b = b;}
}class B {private A a;public void setA(A a) {this.a = a;}
}

        类A和类B相互引用,每个对象都持有对方的引用,形成了一个循环引用的环,当Main方法执行完毕后,a和b对象都置为null。由于它们相互引用,它们的引用计数器都不为0,无法被垃圾回收器回收,导致内存泄漏,但是上面代码却不会发生内存泄漏,因为多数jvm没有采用这个引用计数器方案,而是采用可达性分析算法

GCRoot和可达性分析算法

什么是可达性分析算法

        简而言之就是从一些“GC Roots”对象开始,通过搜索引用链的方式,找到所有可达对象。如果一个对象没有任何引用链与GC Roots相连,那么它就被判定为不可用的,是可以被回收的垃圾对象。

什么是GC Root

        指一些被JVM认为是存活的对象,它们是垃圾回收算法的起点,可以理解为由堆外指向堆内的引用, 本身是没有存储位置,都是字节码加载运行过程中加入 JVM 中的一些普通引用。通俗的例子可以是一个树形结构,树的根节点就是GC Roots,是垃圾回收器的起点,如果一个节点没有任何子节点与根节点相连,那这个节点就被认为是不可达的,可以被回收器回收。

        举个例子,将GC Roots比喻成一座城市,城市中有很多建筑物,这些建筑物就是内存中的对象,GC Roots就像城市的卫生局、消防局等,它们直接或间接地与城市中的建筑物相连,从这些机构出发,通过道路、桥梁等连接,最终能够到达所有的建筑物,如果一个建筑物没有与这些机构相连,那么它就被认为是废弃的,可以被清理掉。

JVM中的GC Roots对象包括以下几种:

        1)虚拟机栈(栈帧中的本地变量表)中引用的对象。

        2)方法区中类静态属性引用的对象。JDK 1.7 开始静态变量的存储从方法区移动到堆中,比如你定义了一个static 的集合对象,那里面添加的对象就是可以被GC Root可达的

        3)方法区中常量引用的对象。字符串常量池从 JDK 1.7 开始由方法区移动到堆中,本地方法栈中JNI(即一般说的Native方法)引用的对象。

小技巧:由于GC Roots采用栈方式存放变量和指针,如果一个指针它保存了堆内存里面的对象,但是自己又不能存放在堆内存里面,那么它就是一个GC Roots。

代码举例

// product 是栈帧中的本地变量,指向了 title = CSDN 这个 Product 对象
// 此时 当product 充当了 GC Root 的作用
// 当product = null; ,那么product 与原来指向product 对象断开了连接
// 所以这个 new Product("CSDN") 对象会被回收public class GCTest {public static void main(String[] args) {Product product = new Product("CSDN");product = null;}
}

对象回收的关键知识点

标记对象可回收就一定会被回收吗?

        不一定会回收,对象的finalize方法给了对象一次最后一次存活的机会。当对象不可达(可回收)并发生 GC 时,会先判断对象是否执行了 finalize 方法,如果未执行则会先执行 finalize 方法。前对象与 GC Roots 关联,执行 finalize 方法之后,GC 会再次判断对象是否可达,如果不可达,则会被回收,如果可达,则不回收!需要注意的是 finalize 方法只会被执行一次,如果第一次执行 finalize 方法,对象变成了可达,则不会回收,但如果对象再次被 GC,则会忽略 finalize 方法,对象会被直接回收掉!

可达性分析算法为什么可以解决循环引用造成的内存泄漏问题?

        当两个或多个对象相互引用时,它们的引用链会形成一个环,但是由于这个环中的对象与GC Roots没有任何引用链相连,所以JVM会将这些对象判定为不可用的,从而回收它们。如下图所示。

垃圾回收算法

标记-清除算法原理

         是一种常见的垃圾回收算法,它的基本思路是分为两个阶段:标记阶段和清除阶段

        在标记阶段,垃圾回收器会从一些GC Roots对象开始,遍历整个对象图,标记所有被引用的对象。被标记的对象会被打上标记,表示这些对象是“活”的对象,需要保留下来,未被标记的对象就是垃圾对象,可以被回收。

        在清除阶段,垃圾回收器会对所有未被标记的对象进行回收。        

        其优点在于可以回收不连续的内存空间。其缺点显而易见,标记和清除两个步骤,都需要垃圾回收器遍历整个对象图,耗费时间较长,并且会产生内存碎片,当频繁进行垃圾回收时,内存碎片会越来越多导致可用内存空间不足,一次次不连续的内存使用,会影响程序的性能和稳定性。

        该算法应用场景应用在实际应用中,标记清除法一般用于不需要频繁进行垃圾回收的场景,比如在Java堆中大对象的分配和回收。其实后续的收集算法大多都是以标记-清除算法为基础,对其缺点进行改进。

标记-复制算法原理

        是一种常见的垃圾回收算法,它的基本思路是将Java堆分为两个区域:一个活动区域和一个空闲区域。在垃圾回收过程中,首先标记所有被引用的对象,然后将所有被标记的对象复制到空闲区域中,最后交换两个区域的角色,完成垃圾回收

        从下图可以看出复制到空闲区域后的内存对象是连续的,以及未使用的内存空间也被重新分配。

为更深入了解该算法,我们详细看看它的实现步骤:

        1)在初始化环境下会将Java堆分为两个区域:一个活动区域一个空闲区域。初始时,所有对象都分配在活动区域中

        2)从GC Roots对象开始,遍历整个对象图,标记所有被引用的对象;

        3)对所有被标记存活的对象进行遍历,将它们复制到空闲区域中,并更新所有指向它们的引用,使它们指向新的地址

        4)对所有未被标记的对象进行回收,将它们所占用的内存空间释放;

        5)交换活动区域和空闲区域的角色,空闲区域变为新的活动区域,原来的活动区域变为空闲区域;

        6)当空闲区域的内存空间不足时,进行一次垃圾回收,重复以上步骤

        这样的方式其优点在于,如果内存中的垃圾对象较多,需要复制的对象就较少,则效率高,清理后,内存碎片少。其缺点也不少,虽然标记复制算法的效率较高,但是预留一半的内存区域用来存放存活的对象,占用额外的内存空间。如果出现存活对象数量比较多的时候,需要复制较多的对象效率低,假如是在老年代区域,99%的对象都是存活的,则性能低,所以老年代不适合这个算法。

        该算法应用场景应用在新生代的垃圾回收,因此需要对新生代的对象进行分代管理,虚拟机多数采用这个算法,对新生代进行内存管理,因为多数这个新生代区域的存活对象数量少。国外有公司统计过多数业务,98%撑不过一次GC,所以不用1:1比例分配新生代的空间

        这么分配的原因在于,当发生GC时, 将Eden和Survivor中存活对象一次性复制到另外一块Survivor空间上, 然后清理掉Eden和已用过的那块Survivor空间,每次新生代中可用内存空间为整个新生代容量的90% (Eden的80% + Survivor的 10%) ,只有一个Survivor空间, 即10%的新生代是会被浪费而已。

标记-整理-压缩算法原理

        从根节点开始对所有可达对象做一次标记,但之后并不简单地清理未标记的对象,而是将所有的存活对象压缩到内存的一端,然后清理边界外的垃圾,避免了碎片的产生,也不需要两块相同的内存空间,因此性价比比较高。

        其优点在于,解决了标记清除算法的碎片化的问题。和对比标记-复制算法来看,该算法不用浪费额外的空间,因为前者算法需要预留一部分空闲区域用于复制。和对比标记-清除算法来看,前者是一种非移动式的回收算法,而该算法是移动式的回收,且解决了内存碎片化的问题。

        其缺点就是效率相比于标记复制算法和标记清除算法低一些,在整理存活对象时,因对象位置的变动,需要调整该虚拟机栈中的引用地址。

         该算法应用场景应用在老年代的内存回收,它在标记-清除算法的基础上做了部分优化。 

几种算法对比

        标记-复制算法适合在存活对象少、垃圾对象多的场景,即新生代空间,朝生夕灭的场景

        标记-整理-压缩算法适合在存活对象多、垃圾对象少的场景,即老年代空间,都是历经多次GC,依旧存活的对象。

        标记-清除算法作为基础算法,其实也适合于在老年代空间,但不同的是在处理后会有碎片化空间,使用标记-整理-压缩算法效果会更佳。

这篇关于Java高阶私房菜:JVM垃圾回收机制及算法原理探究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943522

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏