C语言:数据结构(双向链表)

2024-04-28 14:44

本文主要是介绍C语言:数据结构(双向链表),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1、双向链表的结构
  • 2、顺序表和双向链表的优缺点分析
  • 3、双向链表的实现

1、双向链表的结构

在这里插入图片描述

注意:这⾥的“带头“跟前面我们说的“头节点”是两个概念,实际前面的在单链表阶段称呼不严谨,但是为了更好的理解就直接称为单链表的头节点。
带头链表里的头节点,实际为“放哨的”,哨兵位节点不存储任何有效元素,只是站在这里“放哨的”。
“哨兵位”存在的意义:遍历循环链表避免死循环。

2、顺序表和双向链表的优缺点分析

不同点顺序表链表
存储空间上物理上一定连续逻辑上连续,但物理上不一定连续
随机访问支持O(1)不支持O(N)
任意位置插⼊或者删除元素可能需要搬移元素,效率低只需修改指针指向
插入动态顺序表,空间不够时需要扩容没有容量的概念
应用场景元素高效存储和频繁访问任意位置频繁插入和删除

3、双向链表的实现

ListNode.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
//定义双向链表节点的结构
typedef int Ltdatatype;
typedef struct ListNode
{Ltdatatype data;struct ListNode* prev;//指向前一个节点的指针struct ListNode* next;//指向后一个节点的指针
}ListNode;
//双向链表的初始化
ListNode* LtInit();
//尾插
//不改变哨兵位的地址,所以传一级即可
void LtPushBack(ListNode* phead, Ltdatatype x);//插入数据之前,链表必须初始化到只有一个头结点的情况
//打印链表
void LtPrint(ListNode* phead);
//头插
void LtPushFront(ListNode* phead, Ltdatatype x);
//尾删
LtPopBack(ListNode* phead);
//头删
LtPopFront(ListNode* phead);
//查找
ListNode* LtFind(ListNode* phead, Ltdatatype x);
//指定位置前插入
void LtInsert(ListNode* pos, Ltdatatype x);
//删除pos位置
void LtErase(ListNode* pos);
//销毁链表
void LtDestroy(ListNode* phead);

ListNode.c

#define _CRT_SECURE_NO_WARNINGS
#include "ListNode.h"
//申请节点
ListNode* LtBuyNode(Ltdatatype x)
{ListNode* node = (ListNode*)malloc(sizeof(ListNode));if (node == NULL){perror("malloc fail");exit(1);}//申请成功node->data = x;node->next = node->prev = node;return node;
}
//双向链表的初始化
ListNode* LtInit()
{ListNode*phead = LtBuyNode(-1);return phead;
}
//尾插
void LtPushBack(ListNode* phead, Ltdatatype x)
{assert(phead);ListNode* newnode = LtBuyNode(x);//改变新节点的指向newnode->prev = phead->prev;newnode->next = phead;//改变尾节点和哨兵位的指向phead->prev->next = newnode;phead->prev = newnode;
}
//打印链表
void LtPrint(ListNode* phead)
{ListNode* pcur = phead->next;//遍历链表while (pcur != phead){printf("%d->", pcur->data);pcur = pcur->next;}printf("\n");
}
//头插
void LtPushFront(ListNode* phead,Ltdatatype x)
{assert(phead);ListNode* newnode = LtBuyNode(x);newnode->prev = phead;newnode->next = phead->next;//修改哨兵位和第一个有效节点的指向phead->next->prev = newnode;phead->next = newnode;
}
//尾删
LtPopBack(ListNode* phead)
{//链表必须有效且链表不能为空(只有一个哨兵位)assert(phead && phead->next != phead);ListNode* Del = phead->prev;//尾节点ListNode* DelPrev = Del->prev;//尾节点的前一个节点phead->prev = DelPrev;DelPrev->next = phead;free(Del);//删除Del节点Del = NULL;
}
//头删
LtPopFront(ListNode* phead)
{//判断链表是否有效和链表是否为空assert(phead && phead->next != phead);ListNode* Del = phead->next;//第一个有效节点ListNode* DelNext = Del->next;//有效节点的下一个节点phead->next = DelNext;DelNext->prev = phead;free(Del);//删除Del节点Del = NULL;
}
//查找
ListNode* LtFind(ListNode* phead, Ltdatatype x)
{ListNode* pcur = phead->next;//遍历链表while (pcur != phead){if (pcur->data == x)return pcur;pcur = pcur->next;//继续让pcur往下遍历}return NULL;//没有找到
}
//在pos位置之前插入数据
void LtInsert(ListNode* pos,Ltdatatype x)
{ListNode* newnode = LtBuyNode(x);newnode->prev = pos->prev;newnode->next = pos;pos->prev->next = newnode;pos->prev = newnode;
}
//删除pos位置
void LtErase(ListNode* pos)
{assert(pos);ListNode* PosPrev = pos->prev;//pos的前一个节点ListNode* PosNext = pos->next;//pos的后一个节点PosPrev->next = PosNext;PosNext->prev = PosPrev;free(pos);//pos = NULL;这里就算置空了,也不会影响实参
}
//销毁链表
void LtDestroy(ListNode* phead)
{ListNode* pcur = phead->next;//边遍历边释放节点while (pcur != phead){ListNode* Next = pcur->next;//保存要释放掉节点的下一个地址free(pcur);pcur = Next;}//此时pcur指向phead,而phead还没有被销毁free(phead);pcur = NULL;
}

text.c

#define _CRT_SECURE_NO_WARNINGS
#include "ListNode.h"
void LtnodeTest()
{//测试初始化ListNode* plist = LtInit();//测试尾插LtPushBack(plist,1);LtPushBack(plist,2);LtPushBack(plist,3);//测试打印LtPrint(plist);//测试头插//LtPushFront(plist,4);//LtPushFront(plist,5);//LtPushFront(plist,6);//LtPrint(plist);//测试尾删LtPopBack(plist);LtPrint(plist);//测试头删//LtPopFront(plist);//LtPrint(plist);//测试查找//ListNode*find = LtFind(plist,2);//if (find)//	printf("找到了!\n");//else//	printf("没找到!\n");//测试在pos位置之前插入数据//LtInsert(find,88);//LtPrint(plist);//测试删除pos位置//LtErase(find);//find = NULL;//形参的改变不会影响实参,所以要在函数调用结束之后置为空//LtPrint(plist);//测试销毁链表//LtDestroy(plist);//plist = NULL;
}
int main()
{LtnodeTest();return 0;
}

如果对你有所帮助的话,别忘了一键三连哟,谢谢宝子们😘!

这篇关于C语言:数据结构(双向链表)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943520

相关文章

C语言逗号运算符和逗号表达式的使用小结

《C语言逗号运算符和逗号表达式的使用小结》本文详细介绍了C语言中的逗号运算符和逗号表达式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 在C语言中逗号“,”也是一种运算符,称为逗号运算符。 其功能是把两个表达式连接其一般形式为:表达

Go语言实现桥接模式

《Go语言实现桥接模式》桥接模式是一种结构型设计模式,它将抽象部分与实现部分分离,使它们可以独立地变化,本文就来介绍一下了Go语言实现桥接模式,感兴趣的可以了解一下... 目录简介核心概念为什么使用桥接模式?应用场景案例分析步骤一:定义实现接口步骤二:创建具体实现类步骤三:定义抽象类步骤四:创建扩展抽象类步

GO语言实现串口简单通讯

《GO语言实现串口简单通讯》本文分享了使用Go语言进行串口通讯的实践过程,详细介绍了串口配置、数据发送与接收的代码实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录背景串口通讯代码代码块分解解析完整代码运行结果背景最近再学习 go 语言,在某宝用5块钱买了个

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared

Go语言中如何进行数据库查询操作

《Go语言中如何进行数据库查询操作》在Go语言中,与数据库交互通常通过使用数据库驱动来实现,Go语言支持多种数据库,如MySQL、PostgreSQL、SQLite等,每种数据库都有其对应的官方或第三... 查询函数QueryRow和Query详细对比特性QueryRowQuery返回值数量1个:*sql

GO语言中gox交叉编译的实现

《GO语言中gox交叉编译的实现》本文主要介绍了GO语言中gox交叉编译的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、安装二、使用三、遇到的问题1、开启CGO2、修改环境变量最近在工作中使用GO语言进行编码开发,因

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求: