推荐 :数据科学与大数据技术面试建议与技巧之危险信号

2024-04-28 13:18

本文主要是介绍推荐 :数据科学与大数据技术面试建议与技巧之危险信号,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文列举了12个危险信号,当数据科学家职位面试中发现公司存在这些危险信号时,你应该要远离这家公司。如果你想加入一家公司作为他们的第一个数据科学家,你将面临一系列不同的挑战。例如你极有可能要做很多数据工程工作(参见信号1),拓宽自己的数据科学思维模式。这些工作的确需要有人来完成,但我们通常建议你不要担任第一个数据科学角色,除非你有数据工程背景并且想做这方面的工作。如果你所面试的公司只有一位数据科学领导者并且他们正在建立一个团队,你可以询问他们计划如何处理下面提出的问题。但请记住,承诺一个理想的系统总是比实现一个更容易。


数据科学团队运行方面的危险信号


1没有数据工程或基础设施

数据科学要求数据在分析环节能被方便使用或获取。如果公司没有一个维护良好的数据基础设施,那么你将无法获得工作所需。数据工程师的职责是获取数据以供数据分析环节使用,如果公司没有数据工程师,那么你不得不自己完成数据获取工作。如果你觉得你能胜任数据工程师的角色,上述问题可能无所谓,否则你不得不在获取有价值的数据上花费很多精力。

在面试期间要问的问题:贵公司的数据基础设施是什么样的?维护者是谁? 数据通常采用什么格式(Excel、SQL数据库、csv)?


2没有数据科学家之间的同行评审

一个强大的数据科学团队有办法确保任何错误不被遗漏。实现方法包括代码审查、练习演示以及与团队的一致性检查。如果团队不能始终如一地执行这些操作,那么错误在工作交付之后才会被发现,并导致某些人因此受到斥责。

在面试期间要问的问题:团队采取哪些步骤进行质量保证和同行评审?


3团队中没有标准的语言集

许多数据科学团队允许团队中的任何人使用他们想要使用的任何语言。这个想法的初衷是,如果每个人都使用他们喜欢的语言,工作将更快完成。但这种做法存在一个很大的问题:当每个人都使用不同的语言时,人们无法将自己的工作交付给其他人。每项数据科学任务都由独立的个体负责,如果他们辞职了、生病了、或者需要帮助时,没有人能够接手他们的工作或者帮助他们,这就会造成一个非常紧张的工作环境。其实在工作中使用R、Python、甚至SAS其实都是可以的,但团队必须使用一套一致的语言。

在面试期间要问的问题:您的团队使用哪些语言?贵公司如何决定是否采用新语言?


4不了解数据的需求层次

与没有数据基础设施类似,有些公司对人工智能这样的概念感到非常兴奋,但却没有相应的基础。机器学习和人工智能要求公司具备高水平的数据科学成熟度,包括了解如何构建模型、它们的局限性以及如何部署它们。当公司不切实际的期望与现实相遇时,你可能会受到指责。

在面试期间要问的问题:公司如何平衡花费在实现复杂算法(如人工智能)与基础性工作(如清洗数据、检查数据质量和添加日志)上的时间?


5团队没有版本控制

成熟的数据科学团队使用git(开源的分布式版本控制系统)来跟踪分析和代码的变化。不够成熟的团队则使用诸如共享网络文件夹之类的方法,采用这些方法会导致你无法了解内容是何时被更改的、内容为何被更改、以前版本的内容是什么。甚至有些团队根本不会共享代码,只依靠数据科学家的个人笔记本电脑进行工作。你应当像避免瘟疫一样,对最后列举的这种团队敬而远之。 因为团队若无法共享代码,则团队成员也无法一起工作。

在面试期间要问的问题:贵公司如何在团队中共享代码?是所有代码都是共享的还是只是其中一部分?


6未划分运行报表和做分析间的界限

创建和维护报表、构建数据科学模型、将机器学习模型投入生产等不同的工作任务所需的技能组合都是不同的。如果公司无法明确每个人具体做什么工作,那么你将以完全不同于你预期的方式开始并结束你的工作。相信你并不希望在第一天进入公司时,期望的工作内容为建立时间序列预测,结果发现实际工作任务却是刷新月度销售的Excel电子表格。

在面试期间要问的问题:贵公司如何划分报表管理、分析、生产模型构建的任务?



公司如何评估他人方面的危险信号


1面试过程是非结构化的

结构化的面试过程意味着每位应聘者都能得到相同的问题集,从而可以更平等地进行比较。这样做不仅可以减少偏见,还可以促使团队仔细思考在被面试者身上,什么是团队所看重的。如果面试过程是非结构化的,即面试官似乎总是在问一些即兴的问题,那么这就充分表明公司还没有弄清楚自己到底想从应聘者身上得到什么、以及如何得到它。如果公司不知道自己想要什么,那么在工作中你也很难给出他们想要的东西。

建议:观察公司是否为面试准备了一系列问题,或者询问他们是如何选择问你的问题。


2在面试中没有为你预留提问时间

因为面试也是为了让你了解公司情况,所以你需要有时间去询问、去了解。如果公司没有为你预留提问时间,那么说明面试官并不关心你在面试中是否感到舒适,也没有兴趣让你评估自己是否适合该公司和该职位。

建议:如果在面试中你没有时间提问,那么你可以给面试官一张纸条,询问面试官何时适合询问他们问题。


3在面试中没有考察编程能力

虽然编程不是数据科学家最重要的技能,但它是工作中你不得不做的事情。面试的编程部分可以是现场测试,也可以是带回家的测试,但无论如何它肯定是应该存在的。 如果面试过程不包括编程,可能是出于以下几个原因:(1)数据科学团队是新建立的,所以没有人可以主持面试。在这种情况下,你应当意识到你可能无法在工作上获得支持。(2)团队没有时间进行编程面试,这是他们不重视招聘的一个迹象。(3)工作中不需要编程,使用诸如Tableau和Excel等BI(商业智能)工具即可满足工作需求。(4)他们非常信任你的简历内容,所以他们不需要测试你。虽然听起来像是夸赞,但这表明他们迫切希望雇用你。

建议:如果面试不包括编程部分,请询问他们是如何判断哪些应聘者具备该工作所需的技术技能。


4对你入职的前期工作没有计划

公司对于发布的职位招聘应当是有充分理由的。如果公司无法清楚地说明你在前几个月要做些什么,那原因可能是:公司被现有的工作所压垮,需要招聘一些人来一起解决问题。对于团队而言,这是一种非常危险的成长方式。更糟糕的是,这通常发生在没有新员工入职流程的公司。所以这些情况对整个团队来说都非常有压力的,而且这些压力通常也会落在你身上。

建议:请询问公司是否有明确的项目和入职流程。如果他们没有非常明确的答案,那就赶紧溜吧。


5对员工的进修不提供支持

数据科学是一个快速发展的大型领域,如果你不能持续地学习,你就会落后。因而团队应该有相应方法来帮助团队成员保持学习进度。例如可以为员工的在线教育和会议提供资金支持,可以每月组织会议让员工们讨论行业博文,也可以鼓励员工参加会议、开源项目或系列演讲。如果公司愿意这样做,表明公司愿意投资于他们的职员。

建议:询问公司如何支持团队的持续进修。公司是否为会议或研习班提供资金支持?


6不同面试官对职业的认知不一致

通常,面试让你能与公司内部的许多人进行交谈,包括你未来的经理、队友和商业利益相关者。如果对于你所应聘职位的责任、工作类型、角色提供的内容、以及工作的时间,他们有不同的理解与要求,那么他们可能都不认可彼此的观点。如果他们不能达成一致,尤其是在关于你最终要做的工作的相关事情上,那么你的工作最终会充满冲突。

建议:记住面试官们在不同面试中的发言。如果发现不一致,询问为什么。


通过密切观察,你可以避免获得一份你不喜欢的工作。祝你好运!


640?wx_fmt=jpeg

原文URL:http://hookedondata.org/Red-Flags-in-Data-Science-Interviews/

原文标题:Red Flags In Data Science Interviews

原文作者:Emily Robinson

翻译、校对和排版:李雪明、朝乐门


转自:数据科学DataScience 公众号;

END

版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


关联阅读:

原创系列文章:

1:从0开始搭建自己的数据运营指标体系(概括篇)

2 :从0开始搭建自己的数据运营指标体系(定位篇)

3 :从0开始搭建自己的数据运营体系(业务理解篇)

4 :数据指标的构建流程与逻辑

5 :系列 :从数据指标到数据运营指标体系

6:   实战 :为自己的公号搭建一个数据运营指标体系

7:  从0开始搭建自己的数据运营指标体系(运营活动分析)

数据运营 关联文章阅读:  

运营入门,从0到1搭建数据分析知识体系    

推荐 :数据分析师与运营协作的9个好习惯

干货 :手把手教你搭建数据化用户运营体系

推荐 :最用心的运营数据指标解读

干货 : 如何构建数据运营指标体系

从零开始,构建数据化运营体系

干货 :解读产品、运营和数据三个基友关系

干货 :从0到1搭建数据运营体系

数据分析、数据产品 关联文章阅读:

干货 :数据分析团队的搭建和思考

关于用户画像那些事,看这一文章就够了

数据分析师必需具备的10种分析思维。

如何构建大数据层级体系,看这一文章就够了

干货 : 聚焦于用户行为分析的数据产品

如何构建大数据层级体系,看这一文章就够了

80%的运营注定了打杂?因为你没有搭建出一套有效的用户运营体系

从底层到应用,那些数据人的必备技能

读懂用户运营体系:用户分层和分群

做运营必须掌握的数据分析思维,你还敢说不会做数据

合作请加qq:365242293  


更多相关知识请回复:“ 月光宝盒 ”;

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

640?wx_fmt=png

这篇关于推荐 :数据科学与大数据技术面试建议与技巧之危险信号的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943360

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr