构建端到端数据科学项目,从我的Data Scientist Ideal Profiles项目中学习(附链接)...

本文主要是介绍构建端到端数据科学项目,从我的Data Scientist Ideal Profiles项目中学习(附链接)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

翻译:张睿毅;校对:吴金笛

本文约1500字,建议阅读5分钟。

本文为你介绍了构建数据科学项目中重要的思维能力及训练建议。

Joseph Barrientos 拍照于 Unsplash

(链接:https://unsplash.com/photos/Ji_G7Bu1MoM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText )

人们常说,数据科学家的主要工作不是实际的分析和建模,而是数据的整理和清理部分。因此,涉及这些阶段的全周期数据科学项目将更有价值,因为它们证明了作者独立处理真实数据的能力,而不是使用给定的干净数据集。

完全理解端到端数据科学项目的价值,我一直想建立一个,但直到现在还不能建立。

我最近完成了我的Ideal Profiles项目(链接:https://towardsdatascience.com/what-does-an-ideal-data-scientists-profile-look-like-7d7bd78ff7ab )。因为这是一个涉及许多运动部件的重大项目,所以我想记录过程和经验教训,这是一个进一步的学习机会(受到威廉·科赫森(链接:https://medium.com/@williamkoehrsen )关于数据科学写作价值的伟大文章的启发)。

各阶段

我认为,全周期数据科学项目应包括以下几个阶段:

 

Kaggle项目上工作的最大的争论是它只专注于第二阶段。因此,在这个项目中,我将确保涵盖所有三个阶段。

在第一阶段,我做了网络抓取来获取数据,由于数据是脏的,所以我不得不整理数据进行分析。然后我做了各种数据可视化,并在第二阶段进行了分析。最后,我写了一些文章来发表结果并将这个项目投入生产。

当然,我可以通过包含一个机器学习组件使这个项目更加完整,例如,使用自然语言处理根据内容对工作岗位进行分类,但这将显著延迟项目完成时间,这将使我们进入下一个阶段:

迭代思维

对于一个给定的项目,可能有无限多的事情要处理,但实际上,我们只有的时间。为了协调这两个竞争因素,我们需要有纪律。

对我来说,“迭代思维”确实有帮助 —— 看,罗马不是一天建成的,所以让我们先构造一些有用的东西,然后将其交付,然后我们总是可以回来改进更多的特征。另一方面,这也意味着我们需要能够处理“不完美”,而不是专注于细节。

考虑到这一理念,我能够延迟一些非常诱人的特征,并将它们放在项目文档的待办事项部分(链接:https://github.com/georgeliu1998/ideal_profiles#to-dos )。其中之一是使用更大的来自美国而不是加拿大的网站上的数据集。

模块化

鉴于项目的端到端的特性,我们有很多不同方面的工作:网络抓取,数据预处理,绘图……如果我们把所有的代码在一个Jupyter Notebook,它会过于大且复杂而不能处理。于是我决定使用Python脚本和一个中心Jupyter Notebook解决这个问题。

我将支持函数分为三大类,并将它们封装在三个相应的脚本中:

  • scrape_data.py-包含Web抓取所需的函数,如“get_soup()”“get_urls()”

  • process_text.py-包含文本处理和清除函数,如“tokenize_text()”“check_freq()”

  • helper.py-包含文件输入输出和绘图函数,例如“plot_skill()”

这样,我就可以保持一个超轻且有组织的中心Notebook。然后根据需要从Notebook中导入和调用函数,如下所示:

from scrape_data import *

from process_text import *

from helper import *

复制性

由于我在网上发现的许多抓取脚本都不起作用,我决定确保我的项目是可复制的。除了可靠的代码之外,一个健壮的README文件和一个完整的环境依赖文件也是解决方案的一部分。

  • readme.md-我努力确保捕获所有相关细节,特别是如何设置环境和如何使用脚本。

  • env_Ideal_profiles.yaml-通过将所有依赖项冻结到此文件中,我确保用户可以完全重新创建我使用的同一Anaconda python环境。此处提供更多信息(链接:https://conda.io/docs/user-guide/tasks/manage-environments.html )。

代码最优练习

良好的编码实践很重要!特别是,我发现以下实践在编写更大更复杂的项目时非常有用:

  • 具有有意义的描述性变量/函数名

  • 提供详细和结构化的文档字符串(链接:https://stackoverflow.com/questions/3898572/what-is-the-standard-python-docstring-format)

  • 确保使用python“try except”块处理异常

当你的项目是一个30行的Jupyter Notebook时,这些事情可能看起来微不足道,但是当你处理一个需要数百行代码的主要项目时,这些事情可能真的很关键!

厉害了Matplotlib

我过去只对基本的Matplotlib技巧感到舒服。然而,对于这个项目,我不仅需要将几个图组合成一个,而且还必须进行详细的自定义,例如旋转轴标记标签……在这一点上,基本的Matplotlib技能将不再足够。

 

事实证明这是一个学习Matplotlib的好机会。一旦我知道它能做什么,我发现它不可能回头,仅仅是因为matplotlib真的很强大!它的面向对象方法允许您修改几乎所有内容…请查看以下教程以了解:

  • Matplotlib教程:Python绘图

    (链接:https://www.datacamp.com/community/

    tutorials/matplotlib-tutorial-python )

  • 高效利用Matplotlib

    (链接:http://pbpython.com/effective-

    matplotlib.html )

  • 使用Matplotlib绘制Python(指南)

    (链接:https://realpython.com/blog/python/

    python-matplotlib-guide/ )

谢谢你的阅读!

原文链接:

https://towardsdatascience.com/building-an-end-to-end-data-science-project-28e853c0cae3 

译者简介:张睿毅,北京邮电大学大二物联网在读。我是一个爱自由的人。在邮电大学读第一年书我就四处跑去蹭课,折腾整一年惊觉,与其在当下焦虑,不如在前辈中沉淀。

本文转自:数据派THU ;获授权;

END

合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于构建端到端数据科学项目,从我的Data Scientist Ideal Profiles项目中学习(附链接)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943286

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核