2.算法:棋盘路径问题。走格子/棋盘问题 有多少条路径可走

2024-04-28 05:32

本文主要是介绍2.算法:棋盘路径问题。走格子/棋盘问题 有多少条路径可走,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.问题描述

给定一个m*n的格子或棋盘,问从左上角走到右下角的走法总数(每次只能向右或向下移动一个方格边长的距离。


2.基本要求

期盼路径算法,走方格问题,给定一个m*n的小方格子组成的棋盘,问从棋盘左上角走到右下角的走法总数。
要求:只能向右走或者向下走。求出从左上到右下的路径数。


如图一所示,是一个棋盘,要求从start开始到end结束的路径数。


图一
3.算法思想:递归
不过最终求的是f(m,n)=f(m-1,n)+f(m,n-1),初始为f(0,0)=0,f(0,1)=1,f(1,0)=1


4.主要代码

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
int cube(int m,int n)
{if (m > 1 && n > 1){return cube(m, n - 1) + cube(m - 1, n);}else if ((m == 0) && (n>1)){return cube(m,n-1);}else if ((n == 0) && (m>1)){return cube(m-1,n);}else if ((m == 0 && n == 1) || (m == 1 && n == 0)){return 1;}else return 0;
}
int main()
{printf("%d",cube(9,8));system("PAUSE");
}

5.时间复杂度分析

我们可以把棋盘的左下角看做二维坐标的原点(0,0),把棋盘的右上角看做二维坐标(n,n)(坐标系的单位长度为小方格的变长)
用f(i,j)表示移动到坐标f(i,j)的走法总数,其中0<=i,j<=N, f(m,n)=f(m-1,n)+f(m,n-1),初始情况就为:f(0,0)=0, f(0,1)=1, f(1,0)=1,这个问题可以在时间O(n^2),空间O(n^2)内求解。


6.图解

如图所示,为空间复杂度分析。

这里写图片描述

这篇关于2.算法:棋盘路径问题。走格子/棋盘问题 有多少条路径可走的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/942424

相关文章

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.