Spark AQE 导致的 Driver OOM问题

2024-04-27 04:20
文章标签 问题 导致 driver spark oom aqe

本文主要是介绍Spark AQE 导致的 Driver OOM问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

最近在做Spark 3.1 升级 Spark 3.5的过程中,遇到了一批SQL在运行的过程中 Driver OOM的情况,排查到是AQE开启导致的问题,再次分析记录一下,顺便了解一下Spark中指标的事件处理情况

结论

SQLAppStatusListener 类在内存中存放着 一个整个SQL查询链的所有stage以及stage的指标信息,在AQE中 一个job会被拆分成很多job,甚至几百上千的job,这个时候 stageMetrics的数据就会成百上倍的被存储在内存中,从而导致Driver OOM
解决方法:

  1. 关闭AQE spark.sql.adaptive.enabled false
  2. 合并对应的PR-SPARK-45439

分析

背景知识:对于一个完整链接的sql语句来说(比如说从 读取数据源,到 数据处理操作,再到插入hive表),这可以称其为一个最小的SQL执行单元,这最小的数据执行单元在Spark内部是可以跟踪的,也就是用executionId来进行跟踪的。
对于一个sql,举例来说 :

insert into  TableA select * from TableB;

在生成 物理计划的过程中会调用 QueryExecution.assertOptimized 方法,该方法会触发eagerlyExecuteCommands调用,最终会到SQLExecution.withNewExecutionId方法:

  def assertOptimized(): Unit = optimizedPlan...lazy val commandExecuted: LogicalPlan = mode match {case CommandExecutionMode.NON_ROOT => analyzed.mapChildren(eagerlyExecuteCommands)case CommandExecutionMode.ALL => eagerlyExecuteCommands(analyzed)case CommandExecutionMode.SKIP => analyzed}...lazy val optimizedPlan: LogicalPlan = {// We need to materialize the commandExecuted here because optimizedPlan is also tracked under// the optimizing phaseassertCommandExecuted()executePhase(QueryPlanningTracker.OPTIMIZATION) {// clone the plan to avoid sharing the plan instance between different stages like analyzing,// optimizing and planning.val plan =sparkSession.sessionState.optimizer.executeAndTrack(withCachedData.clone(), tracker)// We do not want optimized plans to be re-analyzed as literals that have been constant// folded and such can cause issues during analysis. While `clone` should maintain the// `analyzed` state of the LogicalPlan, we set the plan as analyzed here as well out of// paranoia.plan.setAnalyzed()plan}def assertCommandExecuted(): Unit = commandExecuted...private def eagerlyExecuteCommands(p: LogicalPlan) = p transformDown {case c: Command =>// Since Command execution will eagerly take place here,// and in most cases be the bulk of time and effort,// with the rest of processing of the root plan being just outputting command results,// for eagerly executed commands we mark this place as beginning of execution.tracker.setReadyForExecution()val qe = sparkSession.sessionState.executePlan(c, CommandExecutionMode.NON_ROOT)val name = commandExecutionName(c)val result = QueryExecution.withInternalError(s"Eagerly executed $name failed.") {SQLExecution.withNewExecutionId(qe, Some(name)) {qe.executedPlan.executeCollect()}}  

SQLExecution.withNewExecutionId主要的作用是设置当前计划的所属的executionId:

    val executionId = SQLExecution.nextExecutionIdsc.setLocalProperty(EXECUTION_ID_KEY, executionId.toString)

EXECUTION_ID_KEY的值会在JobStart的时候传递给Event,以便记录跟踪整个执行过程中的指标信息。
同时我们在方法中eagerlyExecuteCommands看到qe.executedPlan.executeCollect()这是具体的执行方法,针对于insert into 操作来说,物理计划就是
InsertIntoHadoopFsRelationCommand,这里的run方法最终会流转到DAGScheduler.submitJob方法:

    eventProcessLoop.post(JobSubmitted(jobId, rdd, func2, partitions.toArray, callSite, waiter,JobArtifactSet.getActiveOrDefault(sc),Utils.cloneProperties(properties)))

最终会被DAGScheduler.handleJobSubmitted处理,其中会发送SparkListenerJobStart事件:

    listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos,Utils.cloneProperties(properties)))

该事件会被SQLAppStatusListener捕获,从而转到onJobStart处理,这里有会涉及到指标信息的存储,这里我们截图出dump的内存占用情况:
在这里插入图片描述

可以看到 SQLAppStatusListener 的 LiveStageMetrics 占用很大,也就是 accumIdsToMetricType占用很大

那在AQE中是怎么回事呢?
我们知道再AQE中,任务会从source节点按照shuffle进行分割,从而形成单独的job,从而生成对应的shuffle指标,具体的分割以及执行代码在AdaptiveSparkPlanExec.getFinalPhysicalPlan中,如下:

      var result = createQueryStages(currentPhysicalPlan)val events = new LinkedBlockingQueue[StageMaterializationEvent]()val errors = new mutable.ArrayBuffer[Throwable]()var stagesToReplace = Seq.empty[QueryStageExec]while (!result.allChildStagesMaterialized) {currentPhysicalPlan = result.newPlanif (result.newStages.nonEmpty) {stagesToReplace = result.newStages ++ stagesToReplaceexecutionId.foreach(onUpdatePlan(_, result.newStages.map(_.plan)))// SPARK-33933: we should submit tasks of broadcast stages first, to avoid waiting// for tasks to be scheduled and leading to broadcast timeout.// This partial fix only guarantees the start of materialization for BroadcastQueryStage// is prior to others, but because the submission of collect job for broadcasting is// running in another thread, the issue is not completely resolved.val reorderedNewStages = result.newStages.sortWith {case (_: BroadcastQueryStageExec, _: BroadcastQueryStageExec) => falsecase (_: BroadcastQueryStageExec, _) => truecase _ => false}// Start materialization of all new stages and fail fast if any stages failed eagerlyreorderedNewStages.foreach { stage =>try {stage.materialize().onComplete { res =>if (res.isSuccess) {events.offer(StageSuccess(stage, res.get))} else {events.offer(StageFailure(stage, res.failed.get))}// explicitly clean up the resources in this stagestage.cleanupResources()}(AdaptiveSparkPlanExec.executionContext)

这里就是得看stage.materialize()这个方法,这两个stage只有两类:BroadcastQueryStageExec 和 ShuffleQueryStageExec
这两个物理计划稍微分析一下如下:

  • BroadcastQueryStageExec
    数据流如下:
    broadcast.submitBroadcastJob||\/
    promise.future||\/
    relationFuture||\/
    child.executeCollectIterator()
    其中 promise的设置在relationFuture方法中,而relationFuture 会被doPrepare调用,而submitBroadcastJob会调用executeQuery,从而调用doPrepare,executeCollectIterator()最终也会发送JobSubmitted事件,分析和上面的一样
  • ShuffleQueryStageExec
     shuffle.submitShuffleJob||\/sparkContext.submitMapStage(shuffleDependency)||\/dagScheduler.submitMapStage

submitMapStage会发送MapStageSubmitted事件:

    eventProcessLoop.post(MapStageSubmitted(jobId, dependency, callSite, waiter, JobArtifactSet.getActiveOrDefault(sc),Utils.cloneProperties(properties)))

最终会被DAGScheduler.handleMapStageSubmitted处理,其中会发送SparkListenerJobStart事件:

    listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos,Utils.cloneProperties(properties)))

该事件会被SQLAppStatusListener捕获,从而转到onJobStart处理:

  private val liveExecutions = new ConcurrentHashMap[Long, LiveExecutionData]()private val stageMetrics = new ConcurrentHashMap[Int, LiveStageMetrics]()...override def onJobStart(event: SparkListenerJobStart): Unit = {val executionIdString = event.properties.getProperty(SQLExecution.EXECUTION_ID_KEY)if (executionIdString == null) {// This is not a job created by SQLreturn}val executionId = executionIdString.toLongval jobId = event.jobIdval exec = Option(liveExecutions.get(executionId))

该方法会获取事件中的executionId,在AQE中,同一个执行单元的executionId是一样的,所以stageMetrics内存占用会越来越大。
而这里指标的更新是在AdaptiveSparkPlanExec.onUpdatePlan等方法中。

这样整个事件的数据流以及问题的产生原因就应该很清楚了。

其他

为啥AQE以后多个Job还是共享一个executionId呢?因为原则上来说,如果没有开启AQE之前,一个SQL执行单元的是属于同一个Job的,开启了AQE之后,因为AQE的原因,一个Job被拆成了了多个Job,但是从逻辑上来说,还是属于同一个SQL处理单元的所以还是得归属到一次执行中。

这篇关于Spark AQE 导致的 Driver OOM问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939505

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复