ROS Navigation Stack之dwa_local_planner源码分析

2024-04-27 01:58

本文主要是介绍ROS Navigation Stack之dwa_local_planner源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DWA和base_local_planner的关系

在base_local_planner包中有两个文件叫trajectory_planner.cpp 以及对应的ros实现,其和DWA是同一层的。
由于nav_core提供了统一的接口,因此我们可以先看看统一的接口有哪些,那我们便知道每一个算法里比较重要的函数有哪些。

nav_core包里的base_local_planner.h文件
//最为关键的地方,计算机器人下一刻的速度
virtual bool computeVelocityCommands(geometry_msgs::Twist& cmd_vel) = 0;
//判断是否到达目标点
virtual bool isGoalReached() = 0;
//加载全局路径
virtual bool setPlan(const std::vector<geometry_msgs::PoseStamped>& plan) = 0;
//初始化
virtual void initialize(std::string name, tf::TransformListener* tf, costmap_2d::Costmap2DROS* costmap_ros) = 0;

下面我们就先看看base_local_planner的computeVelocityCommands的主要实现框架

bool TrajectoryPlannerROS::computeVelocityCommands(geometry_msgs::Twist& cmd_vel)
{//检查初始化、检查是否已经到达目标点...略transformGlobalPlan(*tf_, global_plan_, global_pose, *costmap_, global_frame_, transformed_plan);//如果已经到达目标点,姿态还没到if (xy_tolerance_latch_ || (getGoalPositionDistance(global_pose, goal_x, goal_y) <= xy_goal_tolerance_)) {tc_->updatePlan(transformed_plan);//所以这个函数里最关键的子函数是findBestPathTrajectory path = tc_->findBestPath(global_pose, robot_vel, drive_cmds);return true;}tc_->updatePlan(transformed_plan);Trajectory path = tc_->findBestPath(global_pose, robot_vel, drive_cmds);//然后又是转换,然后就发布出速度了...
}

接下来我们看一下TrajectoryPlanner的findBestPath的实现框架,Come on~

Trajectory TrajectoryPlanner::findBestPath(tf::Stamped<tf::Pose> global_pose, tf::Stamped<tf::Pose> global_vel,tf::Stamped<tf::Pose>& drive_velocities)
{//...Trajectory best = createTrajectories(pos[0], pos[1], pos[2], vel[0], vel[1], vel[2],acc_lim_x_, acc_lim_y_, acc_lim_theta_);//...
}

顺藤摸瓜,一睹createTrajectories的内部实现,这个函数是轨迹采样算法,可以说是一个非常关键的函数。

Trajectory TrajectoryPlanner::createTrajectories(double x, double y, double theta,double vx, double vy, double vtheta,double acc_x, double acc_y, double acc_theta) 
{//检查最终点是否是有效的,判断变量在updatePlan中被赋值if( final_goal_position_valid_ ){double final_goal_dist = hypot( final_goal_x_ - x, final_goal_y_ - y );max_vel_x = min( max_vel_x, final_goal_dist / sim_time_ );}//是否使用dwa算法, sim_peroid_是1/controller_frequency_,暂时不清楚sim_period_和sim_time_的区别if (dwa_){max_vel_x = max(min(max_vel_x, vx + acc_x * sim_period_), min_vel_x_);min_vel_x = max(min_vel_x_, vx - acc_x * sim_period_);max_vel_theta = min(max_vel_th_, vtheta + acc_theta * sim_period_);min_vel_theta = max(min_vel_th_, vtheta - acc_theta * sim_period_);}else{max_vel_x = max(min(max_vel_x, vx + acc_x * sim_time_), min_vel_x_);min_vel_x = max(min_vel_x_, vx - acc_x * sim_time_);max_vel_theta = min(max_vel_th_, vtheta + acc_theta * sim_time_);min_vel_theta = max(min_vel_th_, vtheta - acc_theta * sim_time_);}//...先忽略其中的逻辑,只要知道按照不同的规则生成路径,调用的子函数是generateTrajectory
}

这个子函数的作用就是生成路径,并且评分

void TrajectoryPlanner::generateTrajectory
{//主要有两大作用://生成路径和速度vx_i = computeNewVelocity(vx_samp, vx_i, acc_x, dt);vy_i = computeNewVelocity(vy_samp, vy_i, acc_y, dt);vtheta_i = computeNewVelocity(vtheta_samp, vtheta_i, acc_theta, dt);//计算位置x_i = computeNewXPosition(x_i, vx_i, vy_i, theta_i, dt);y_i = computeNewYPosition(y_i, vx_i, vy_i, theta_i, dt);theta_i = computeNewThetaPosition(theta_i, vtheta_i, dt);//对路径进行评分if (!heading_scoring_) {//cost = pdist_scale_ * path_dist + goal_dist * gdist_scale_ + occdist_scale_ * occ_cost;} else {cost = occdist_scale_ * occ_cost + pdist_scale_ * path_dist + 0.3 * heading_diff + goal_dist * gdist_scale_;}//这里的顺序与源码不同,我觉得总分来看更有组织性//该轨迹与全局路径的相对距离path_dist = path_map_(cell_x, cell_y).target_dist;//距离目标点距离goal_dist = goal_map_(cell_x, cell_y).target_dist;//离障碍物距离double footprint_cost = footprintCost(x_i, y_i, theta_i);occ_cost = std::max(std::max(occ_cost, footprint_cost), double(costmap_.getCost(cell_x, cell_y)));
}

综上所述,其整一个逻辑顺序就是computeVelocityCommands->findBestTrajectory --> createTrajectories --> generateTrajectory

最终,选择分数最低的轨迹,发布出去。这便是整个局部规划器的实现思路和逻辑。下一篇,谈谈Costmap2D。

这篇关于ROS Navigation Stack之dwa_local_planner源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939236

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File