python爬虫学习------scrapy第二部分(第三十天)

2024-04-26 22:52

本文主要是介绍python爬虫学习------scrapy第二部分(第三十天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎈🎈作者主页: 喔的嘛呀🎈🎈
🎈🎈所属专栏:python爬虫学习🎈🎈
✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 

兄弟姐妹,大家好哇!我是喔的嘛呀。今天我们来学习 scrapy的第二部分。

一、Item Pipelines

在Scrapy框架中,Item Pipeline是一个用于处理爬虫抓取到的数据的关键组件。它负责接收由Spiders(爬虫)提取出的Item(实体),并对这些Item进行进一步的处理,如清洗、验证和持久化等。Item Pipeline提供了灵活的方式,以便将抓取的数据按照我们的需求进行存储或进一步处理。

以下是Item Pipeline的主要作用:

  1. 数据清洗:Pipeline可以对从网页中抓取的数据进行清洗,去除不需要的字符、空格、HTML标签等,确保数据的整洁和一致性。
  2. 数据验证:在将数据持久化之前,Pipeline可以执行验证操作,检查数据是否满足特定的格式或条件。这有助于确保数据的准确性和可靠性。
  3. 持久化存储:Pipeline可以将清洗和验证后的数据保存到数据库(如MySQL、MongoDB等)、文件(如CSV、JSON等)或其他存储系统中。这样,我们可以长期保存并随时访问这些抓取的数据。
  4. 发送数据到外部API:除了存储数据外,Pipeline还可以将数据发送到外部API进行进一步处理或分析。

要编写自定义的Pipeline,你需要遵循以下步骤:

  1. 创建Pipeline类:首先,你需要创建一个继承自scrapy.pipelines.Pipeline的Python类。在这个类中,你可以定义一些方法,如process_item,来处理传入的Item。
  2. 实现process_item方法process_item方法是Pipeline类中的核心方法,它接收一个Item和一个Spider作为参数。在这个方法中,你可以实现数据清洗、验证和持久化等逻辑。
  3. 配置Pipeline:在你的Scrapy项目的settings.py文件中,你需要添加你的Pipeline类的路径到ITEM_PIPELINES设置中,并为其分配一个优先级数字。这个数字决定了Pipeline的执行顺序,数字越小,优先级越高。

下面是一个简单的自定义Pipeline示例:

# myproject/pipelines.py  class MyCustomPipeline(object):  def __init__(self):  # 初始化方法,可以在这里建立数据库连接等  self.connection = ...  def open_spider(self, spider):  # 在Spider打开时调用,可以用于执行一些启动时的任务  pass  def close_spider(self, spider):  # 在Spider关闭时调用,可以用于执行一些清理任务,如关闭数据库连接等  self.connection.close()  def process_item(self, item, spider):  # 处理Item的方法,你可以在这里实现数据清洗、验证和持久化等操作  # 假设item['data']是需要存储的数据  cleaned_data = self.clean_data(item['data'])  if self.validate_data(cleaned_data):  self.store_data(cleaned_data)  return item  # 如果处理成功,返回Item以便进行后续的Pipeline处理  else:  raise DropItem("Invalid data: %s" % item)  # 如果验证失败,则丢弃该Item  def clean_data(self, data):  # 数据清洗逻辑  ...  def validate_data(self, data):  # 数据验证逻辑  ...  def store_data(self, data):  # 数据持久化逻辑,例如存储到数据库  ...

然后,在你的settings.py文件中配置Pipeline:

# myproject/settings.py  ITEM_PIPELINES = {  'myproject.pipelines.MyCustomPipeline': 300,  # 数字是优先级,可以根据需要调整  
}

通过编写自定义的Pipeline,你可以根据自己的需求灵活地处理爬虫抓取到的数据,实现数据清洗、验证和持久化等功能。

二、Middleware(中间件)

在Scrapy框架中,中间件(Middleware)是一个非常重要的组件,它允许开发者在Scrapy引擎处理请求和响应的过程中插入自定义的代码。中间件位于Scrapy引擎和下载器之间,用于拦截、修改、或添加额外的逻辑到请求和响应中。通过中间件,你可以轻松实现如设置代理、添加请求头、处理异常等功能。

中间件的概念

中间件是一种插件式的组件,用于在Scrapy处理请求和响应的过程中添加额外的功能。Scrapy提供了请求中间件(Request Middleware)和响应中间件(Response Middleware)两种类型。请求中间件在请求被下载器发送之前处理请求,而响应中间件在响应被引擎处理之前处理响应。

如何编写自定义的中间件

要编写自定义的中间件,你需要创建一个Python类,并实现特定的方法。这些方法会在请求或响应被处理时自动调用。

以下是一个简单的自定义请求中间件的示例:

class CustomRequestMiddleware:  def process_request(self, request, spider):  # 在请求被发送之前修改请求,比如添加请求头  request.headers['Custom-Header'] = 'Custom Value'  return None  # 返回None表示继续处理请求  def process_exception(self, request, exception, spider):  # 处理请求过程中发生的异常  # 可以选择记录日志、重试请求或返回None  return None  # 返回None表示继续抛出异常

同样地,你也可以创建自定义的响应中间件:

class CustomResponseMiddleware:  def process_response(self, request, response, spider):  # 在响应被处理之前修改响应,比如检查响应状态码  if response.status != 200:  return self._handle_error(request, response, spider)  # 处理或返回响应  return response  def _handle_error(self, request, response, spider):  # 处理响应错误的逻辑,比如记录日志或重试请求  pass  def process_exception(self, request, exception, spider):  # 处理在下载过程中发生的异常  # 可以选择记录日志、重试请求或返回None  return None  # 返回None表示继续抛出异常

中间件的应用场景

中间件在Scrapy爬虫中有许多应用场景,以下是一些常见的例子:

  1. 设置代理:通过中间件,你可以为所有请求设置代理,以隐藏你的爬虫的真实IP地址。
  2. 添加请求头:你可以使用中间件来添加自定义的请求头,比如User-Agent,以模拟不同的浏览器行为。
  3. 处理异常:中间件可以用来处理在请求或响应过程中发生的异常,比如网络错误、超时等。你可以定义重试逻辑、记录日志或采取其他适当的措施。
  4. 自定义请求或响应数据:在请求被发送或响应被处理之前,你可以通过中间件来修改请求或响应的数据,比如添加额外的参数、过滤不需要的数据等。
  5. 实现身份验证:对于需要身份验证的网站,你可以使用中间件来在请求中添加认证信息,如cookies或API令牌。
  6. 启用或禁用爬虫组件:通过中间件,你可以基于某些条件启用或禁用特定的爬虫组件,如某些特定的spider或downloader中间件。

要启用自定义的中间件,你需要在Scrapy项目的settings.py文件中配置它们。对于请求中间件,你需要将它们添加到DOWNLOADER_MIDDLEWARES设置中;对于响应中间件,你需要将它们添加到SPIDER_MIDDLEWARES设置中。每个中间件都需要一个唯一的键(通常是中间件类的路径)和一个整数值来表示它的优先级。数值越小,优先级越高。

# settings.py  DOWNLOADER_MIDDLEWARES = {  'myproject.middlewares.CustomRequestMiddleware': 543,  
}  SPIDER_MIDDLEWARES = {  'myproject.middlewares.CustomResponseMiddleware': 543,  
}

通过编写和使用中间件,你可以灵活地扩展Scrapy的功能,满足各种复杂的爬虫需求。

三、设置与配置(Settings & Configurations)

Scrapy 设置与配置是控制爬虫行为的重要方面,通过调整不同的设置,你可以定制爬虫的行为以满足特定的需求。以下是关于 Scrapy 设置和配置的基本介绍,以及如何调整并发和延迟来优化爬虫性能。

Scrapy 设置

Scrapy 框架提供了一套默认的设置,这些设置可以在 Scrapy 项目的 settings.py 文件中进行自定义。通过修改这些设置,你可以控制爬虫的行为、性能以及数据处理等方面。

一些常见的 Scrapy 设置包括:

  • ROBOTSTXT_OBEY: 控制爬虫是否遵守 robots.txt 文件中的规则。
  • CONCURRENT_REQUESTS: 并发请求的最大数量,用于控制爬虫同时发送的请求数。
  • DOWNLOAD_DELAY: 下载器在连续发送请求之间的延迟时间(秒),用于控制爬虫发送请求的速率。
  • RETRY_TIMES: 请求失败时的重试次数。
  • RETRY_HTTP_CODES: 需要重试的 HTTP 状态码列表。
  • DUPEFILTER_CLASS: 重复请求过滤器的类名,用于去除重复的请求。
  • ITEM_PIPELINES: Item Pipeline 的配置和顺序。
  • LOG_LEVEL: 控制日志输出的级别。

你可以在 settings.py 文件中添加或修改这些设置来定制你的爬虫。例如:

python复制代码
# settings.py# 并发请求数CONCURRENT_REQUESTS = 16# 请求之间的延迟时间(秒)DOWNLOAD_DELAY = 3# 重试次数RETRY_TIMES = 3# 其他自定义设置...

并发与延迟

调整并发请求数和请求超时时间等设置是优化爬虫性能的关键。以下是一些建议:

并发请求数 (CONCURRENT_REQUESTS):

  • 增加并发请求数可以加快爬取速度,但也可能导致目标网站过载或被封禁。
  • 根据目标网站的负载能力和爬虫所在服务器的性能,适当调整并发请求数。

请求之间的延迟 (DOWNLOAD_DELAY):

  • 设置适当的延迟可以模拟人类用户的浏览行为,降低被封禁的风险。
  • 如果目标网站对请求频率有严格的限制,需要增加延迟时间。

超时时间:

  • 你可以通过 DOWNLOAD_TIMEOUT 设置请求的超时时间。如果请求在这个时间内没有响应,Scrapy 会认为请求失败。
  • 根据网络条件和目标网站的响应速度,调整超时时间以避免不必要的等待或过多的失败请求。

自动调整设置:

  • Scrapy 还提供了 AUTOTHROTTLE_ENABLED 和相关设置,可以自动调整请求延迟,以根据网站的响应速度动态控制爬虫的速度。

调整这些设置时,建议逐步进行,并观察爬虫的性能和目标网站的响应。通过不断地尝试和调整,你可以找到最适合你爬虫的设置组合。

最后,记得在修改完设置后,重新启动你的 Scrapy 项目以使新的设置生效。

好了,今天的学习就到这里了,我们明天再见啦!拜拜!

这篇关于python爬虫学习------scrapy第二部分(第三十天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/938876

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用