SPSS之回归分析

2024-04-26 14:36
文章标签 分析 回归 spss

本文主要是介绍SPSS之回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SPSS中回归分析功能在【分析】--【回归】--【线性】中进行线性回归分析。对于一元线性回归,可通过【图形】--【旧对话框】--【散点图】绘制因变量y和自变量x的散点图。

通过样本数据建立回归方程后不能立即用于对实际问题的分析和预测,需进行各种统计经验,主要包括:

  1. (1)回归方程的拟合优度检验(r检验);
  2. (2)回归方程的显著性检验(F检验);
  3. (3)回归系数的显著性检验(t检验);

(4)残差分析,即分析残差是否满足“正态、独立、等方差(无异常值)”的前提。在SPSS中,在【分析】--【回归】--【线性】--【绘图】框中,可通过绘制残差的散点图、频率直方图以及正态概率图(P-P图)来完成残差分析。

多元回归分析中变量的筛选问题。一般有向前筛选、向后筛选、逐步筛选三种基本策略。逐步筛选是目前使用较多的一种方法。变量的筛选在【分析】--【回归】--【线性】--【方法】框中选择一种策略来完成回归分析。

残差的独立性检验:DW检验(Durbin-Watson):

  1. DW=4:序列完全负自相关
  2. 2<DW<4:序列存在负自相关
  3. DW=2:序列无自相关
  4. 0<DW<2:序列存在正自相关
  5. DW=0:序列完全正自相关

变量的多重共线性测度。一般有以下方式:

  1. (1)容忍度。取值∈(0,1),越接近0表示多重共线性越强;越接近1表示多重共线性越弱
  2. (2)方差膨胀因子(VIF)。VIF≥1。多重共线性越弱,VIF越接近1;多重共线性越强,VIF越大。通常,如果VIF≥10,说明解释变量间有严重的多重共线性。
  3. (3)特征根和方差比。如果特征根中,最大特征根的值远远大于其他特征根的值(0.7以上),说明变量间有很强的多重共线性。如果某个特征根可以同时刻画多个解释变量方差的较大部分比例,说明这些解释变量间有较强的多重共线性。
  4. (4)条件指数。条件指数∈[0,10),多重共线性较弱;条件指数∈[10,100),多重共线性较强;条件指数≥100时,存在严重多重共线性。

接下来我们运用SPSS来进行实战回归分析!

利用文件高校科研研究.sav,因变量为“论文数”,分析其它变量与因变量的相关性,选择一个变量作为自变量,建立一元回归模型并完成回归的显著性检验。

首先浏览高校科研研究.sav数据文件的基本信息:

变量视图可以看到该数据集有8个字段,字段名分别为:x1,x2,x3,x4,x5,x6,x7,x8。对每个字段的标签分别为‘省市名称’、‘投入人年数’、‘投入高级职称的人数’、‘投入科研事业费(百元)’、‘课题总数’、‘专著数’、‘论文数’、‘获奖数’。

再来看看数据集的具体内容:该数据集共有31个样本数据。

下面我们开始步入回归分析:

第一步我们进行相关性检验:[Analyze]→[Correlate]→[Bivariate Correlations]进行双变量相关性检验。将所有变量都添加到‘Variables’中。

因为投入高级职称的人年数与论文数的Pearson相关系数最大,故二者之间的相关性较强,所以选择投入高级职称的人年数作为自变量,论文数为因变量。

一元线性回归建模及回归的显著性检验:

先看看投入高级职称的人年数和论文数的散点图:

选择工具栏[Analyze]→[Regression]→[Linear Regression]。将‘论文数’添加到Dependent中,‘投入高级职称的人数’添加到Independent中。确定输出结果:

由模型汇总表可以看到r检验:样本相关系数r=0.953,样本决定系数r²=0.909,所以回归的拟合优度较好。

在Anova表可以看F检验:F值=289.715, p值=0.000,p值 <α=0.05,所以可以建立回归方程。

在回归系数表中可以看t检验:回归系数p值=0.000,p值 <α=0.05,线性回归显著。

综上三表结果可以确定投入高级职称的人年数作为自变量,论文数为因变量的回归方程为:

\widehat{y}=589.283+3.808x

残差分析:

标准化残差的频率直方图:

标准化残差的P-P图:

由图可知,标准化残差大部分围绕在对角线附近,所以 标准化残差近似服从正态分布。

标准化残差的散点图:

  1. 由图可知, ①标准化残差落入(-3 — 3)内,无异常值。故满足正态分布前提。
  2. ②标准化残差随着因变量的增大表现出明显趋势。故满足独立前提。

利用文件高校科研研究.sav,应用多元线性回归来分析投入人年数、投入高级职称的人年数、投入科研事业费、专著数、论文数、获奖数对立项课题数的预测效果。请首先采用“输入”策略强制所有自变量进入回归,如需重新建模,再采用逐步法进行回归分析。

(1)“输入法”建模:

[Analyze]→[Regression]→[Linear Regression]。将‘课题总数’添加到Dependent中,‘投入人年数’、‘投入高级职称的人数’、‘投入科研事业费(百元)’、‘专著数’、‘论文数’、‘获奖数’添加到Independent中。并在’Mode‘中选择‘Enter’方法。在【Statistics】对话框中勾选:

下面查看输出结果:

输入/除去的变量表。说明最终进入模型中的变量是哪些:获奖数、投入科研事业费、论文数、专著数、投入人年数、投入高级职称的人年数。

模型摘要表中看r检验:样本相关系数r=0.969,样本决定系数r²=0.939,样本校正决定系数调整后r²=0.924,DW值= 1.838,所以存在正自相关性。 即回归的拟合优度较好。

ANOVA表中看F检验F值=61.532, p值=0.000,p值 < α=0.05,拒绝零假设,认为各复回归系数不全为0,因此,可以建立回归方程。

系数表中看t检验:从回归系数p值,容忍度,方差膨胀因子VIF这三个方面来进行分析。

结论:  投入人年数、投入高级职称的人年数、专著数、论文数这四个指标的容忍度均<0.1,方差膨胀因子VIF均>10。说明解释变量间有严重的多重共线性。其中投入人年数的P值为0.003<0.05,说明投入人年数对课题总数的影响比较显著。

多重共线性诊断:

结论:在特征根中,最大特征根的值远远大于其他特征根的值(0.7以上),说明变量间有很强的多重共线性。其中,维度为7的的特征根可以同时刻画投入人年数、投入高级职称的人年数、投入科研事业费、专著数、论文数、获奖数,六个解释变量的方差的较大部分比例,说明这些解释变量间有较强的多重共线性。

从条件指数来看,维度为5、6、7三个的条件指数均在10—100之间,说明他们都有较强的多重共线性。但其中维度为7的的条件指数最大,为58.796,其多重共线性是最强的。

(2)逐步法建模:

在[Linear Regression]对话框中,将’Model‘的方法改为‘Stepwise’即可。

输入/除去的变量表。说明最终进入模型中的变量是投入人年数。

r检验:样本相关系数r=0.959,样本决定系数r²=0.919,调整后r²=0.917,DW值=1.747,所以存在正自相关性。因此回归的拟合优度较好。

F检验:F值=331.018, p值=0.000,p值<α=0.05,拒绝零假设,认为各复回归系数不全为0,可以建立回归方程。

t检验:回归系数p值<α=0.05,线性回归显著。

综上:回归方程为:\widehat{y}=-94.524+0.492x

(3)残差分析:

标准化残差的频率直方图:由图可知,标准化残差近似服从正态分布。

 标准化残差的P-P图:由图可知,标准化残差大部分围绕在对角线附近,所以标准化残差近似服从正态分布。

标准化残差的散点图:由图可知,标准化残差落入(-2 — 3)内,有异常值。故满足正态分布前提。标准化残差有随着因变量的增大表现出明显趋势。故满足独立前提。

需要练习原数据的同学,点赞+关注后台私信获取!!!

需要练习原数据的同学,点赞+关注后台私信获取!!!

需要练习原数据的同学,点赞+关注后台私信获取!!!

这篇关于SPSS之回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937842

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.