SPSS之回归分析

2024-04-26 14:36
文章标签 分析 回归 spss

本文主要是介绍SPSS之回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SPSS中回归分析功能在【分析】--【回归】--【线性】中进行线性回归分析。对于一元线性回归,可通过【图形】--【旧对话框】--【散点图】绘制因变量y和自变量x的散点图。

通过样本数据建立回归方程后不能立即用于对实际问题的分析和预测,需进行各种统计经验,主要包括:

  1. (1)回归方程的拟合优度检验(r检验);
  2. (2)回归方程的显著性检验(F检验);
  3. (3)回归系数的显著性检验(t检验);

(4)残差分析,即分析残差是否满足“正态、独立、等方差(无异常值)”的前提。在SPSS中,在【分析】--【回归】--【线性】--【绘图】框中,可通过绘制残差的散点图、频率直方图以及正态概率图(P-P图)来完成残差分析。

多元回归分析中变量的筛选问题。一般有向前筛选、向后筛选、逐步筛选三种基本策略。逐步筛选是目前使用较多的一种方法。变量的筛选在【分析】--【回归】--【线性】--【方法】框中选择一种策略来完成回归分析。

残差的独立性检验:DW检验(Durbin-Watson):

  1. DW=4:序列完全负自相关
  2. 2<DW<4:序列存在负自相关
  3. DW=2:序列无自相关
  4. 0<DW<2:序列存在正自相关
  5. DW=0:序列完全正自相关

变量的多重共线性测度。一般有以下方式:

  1. (1)容忍度。取值∈(0,1),越接近0表示多重共线性越强;越接近1表示多重共线性越弱
  2. (2)方差膨胀因子(VIF)。VIF≥1。多重共线性越弱,VIF越接近1;多重共线性越强,VIF越大。通常,如果VIF≥10,说明解释变量间有严重的多重共线性。
  3. (3)特征根和方差比。如果特征根中,最大特征根的值远远大于其他特征根的值(0.7以上),说明变量间有很强的多重共线性。如果某个特征根可以同时刻画多个解释变量方差的较大部分比例,说明这些解释变量间有较强的多重共线性。
  4. (4)条件指数。条件指数∈[0,10),多重共线性较弱;条件指数∈[10,100),多重共线性较强;条件指数≥100时,存在严重多重共线性。

接下来我们运用SPSS来进行实战回归分析!

利用文件高校科研研究.sav,因变量为“论文数”,分析其它变量与因变量的相关性,选择一个变量作为自变量,建立一元回归模型并完成回归的显著性检验。

首先浏览高校科研研究.sav数据文件的基本信息:

变量视图可以看到该数据集有8个字段,字段名分别为:x1,x2,x3,x4,x5,x6,x7,x8。对每个字段的标签分别为‘省市名称’、‘投入人年数’、‘投入高级职称的人数’、‘投入科研事业费(百元)’、‘课题总数’、‘专著数’、‘论文数’、‘获奖数’。

再来看看数据集的具体内容:该数据集共有31个样本数据。

下面我们开始步入回归分析:

第一步我们进行相关性检验:[Analyze]→[Correlate]→[Bivariate Correlations]进行双变量相关性检验。将所有变量都添加到‘Variables’中。

因为投入高级职称的人年数与论文数的Pearson相关系数最大,故二者之间的相关性较强,所以选择投入高级职称的人年数作为自变量,论文数为因变量。

一元线性回归建模及回归的显著性检验:

先看看投入高级职称的人年数和论文数的散点图:

选择工具栏[Analyze]→[Regression]→[Linear Regression]。将‘论文数’添加到Dependent中,‘投入高级职称的人数’添加到Independent中。确定输出结果:

由模型汇总表可以看到r检验:样本相关系数r=0.953,样本决定系数r²=0.909,所以回归的拟合优度较好。

在Anova表可以看F检验:F值=289.715, p值=0.000,p值 <α=0.05,所以可以建立回归方程。

在回归系数表中可以看t检验:回归系数p值=0.000,p值 <α=0.05,线性回归显著。

综上三表结果可以确定投入高级职称的人年数作为自变量,论文数为因变量的回归方程为:

\widehat{y}=589.283+3.808x

残差分析:

标准化残差的频率直方图:

标准化残差的P-P图:

由图可知,标准化残差大部分围绕在对角线附近,所以 标准化残差近似服从正态分布。

标准化残差的散点图:

  1. 由图可知, ①标准化残差落入(-3 — 3)内,无异常值。故满足正态分布前提。
  2. ②标准化残差随着因变量的增大表现出明显趋势。故满足独立前提。

利用文件高校科研研究.sav,应用多元线性回归来分析投入人年数、投入高级职称的人年数、投入科研事业费、专著数、论文数、获奖数对立项课题数的预测效果。请首先采用“输入”策略强制所有自变量进入回归,如需重新建模,再采用逐步法进行回归分析。

(1)“输入法”建模:

[Analyze]→[Regression]→[Linear Regression]。将‘课题总数’添加到Dependent中,‘投入人年数’、‘投入高级职称的人数’、‘投入科研事业费(百元)’、‘专著数’、‘论文数’、‘获奖数’添加到Independent中。并在’Mode‘中选择‘Enter’方法。在【Statistics】对话框中勾选:

下面查看输出结果:

输入/除去的变量表。说明最终进入模型中的变量是哪些:获奖数、投入科研事业费、论文数、专著数、投入人年数、投入高级职称的人年数。

模型摘要表中看r检验:样本相关系数r=0.969,样本决定系数r²=0.939,样本校正决定系数调整后r²=0.924,DW值= 1.838,所以存在正自相关性。 即回归的拟合优度较好。

ANOVA表中看F检验F值=61.532, p值=0.000,p值 < α=0.05,拒绝零假设,认为各复回归系数不全为0,因此,可以建立回归方程。

系数表中看t检验:从回归系数p值,容忍度,方差膨胀因子VIF这三个方面来进行分析。

结论:  投入人年数、投入高级职称的人年数、专著数、论文数这四个指标的容忍度均<0.1,方差膨胀因子VIF均>10。说明解释变量间有严重的多重共线性。其中投入人年数的P值为0.003<0.05,说明投入人年数对课题总数的影响比较显著。

多重共线性诊断:

结论:在特征根中,最大特征根的值远远大于其他特征根的值(0.7以上),说明变量间有很强的多重共线性。其中,维度为7的的特征根可以同时刻画投入人年数、投入高级职称的人年数、投入科研事业费、专著数、论文数、获奖数,六个解释变量的方差的较大部分比例,说明这些解释变量间有较强的多重共线性。

从条件指数来看,维度为5、6、7三个的条件指数均在10—100之间,说明他们都有较强的多重共线性。但其中维度为7的的条件指数最大,为58.796,其多重共线性是最强的。

(2)逐步法建模:

在[Linear Regression]对话框中,将’Model‘的方法改为‘Stepwise’即可。

输入/除去的变量表。说明最终进入模型中的变量是投入人年数。

r检验:样本相关系数r=0.959,样本决定系数r²=0.919,调整后r²=0.917,DW值=1.747,所以存在正自相关性。因此回归的拟合优度较好。

F检验:F值=331.018, p值=0.000,p值<α=0.05,拒绝零假设,认为各复回归系数不全为0,可以建立回归方程。

t检验:回归系数p值<α=0.05,线性回归显著。

综上:回归方程为:\widehat{y}=-94.524+0.492x

(3)残差分析:

标准化残差的频率直方图:由图可知,标准化残差近似服从正态分布。

 标准化残差的P-P图:由图可知,标准化残差大部分围绕在对角线附近,所以标准化残差近似服从正态分布。

标准化残差的散点图:由图可知,标准化残差落入(-2 — 3)内,有异常值。故满足正态分布前提。标准化残差有随着因变量的增大表现出明显趋势。故满足独立前提。

需要练习原数据的同学,点赞+关注后台私信获取!!!

需要练习原数据的同学,点赞+关注后台私信获取!!!

需要练习原数据的同学,点赞+关注后台私信获取!!!

这篇关于SPSS之回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937842

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File