用于肺结节分类的常规 EHR 的纵向多模态Transformer集成成像和潜在临床特征

本文主要是介绍用于肺结节分类的常规 EHR 的纵向多模态Transformer集成成像和潜在临床特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures from Routine EHRs for Pulmonary Nodule Classification

摘要

该研究提出了一种基于Transformer 的多模态策略,用于将重复成像与常规电子健康记录(EHRs)中的纵向临床特征整合,以进行孤立性肺结节(SPN)的分类。通过对潜在临床特征进行无监督解缠,并利用时间-距离缩放的自注意力机制,共同学习临床特征的表达和胸部计算机断层扫描(CT)。该分类器在一个公共数据集的2,668个扫描和1,149名具有纵向胸部CT、账单代码、药物和实验室检查的患者的EHRs上进行了预训练。对227名具有具有挑战性的SPN的患者进行评估,结果显示与纵向多模态基线相比,AUC显著提高(0.824 vs 0.752 AUC),并且在单个横截面多模态情景(0.809 AUC)和纵向仅成像情景(0.741 AUC)上也有所改善。这项研究证明了一种新颖方法,在利用Transformer 共同学习纵向成像和非成像表型方面具有显著优势。
代码地址

本文方法

在这里插入图片描述
图1。左侧:非成像变量的事件流被转换为纵向曲线。ICA在一个大型的非成像队列上以无监督方式学习独立的潜在标志物S。
右侧:主体k对标志物的表达,Ek,在扫描日期进行采样。输入嵌入是由以下三部分组成的:
1)从标志物或成像中导出的标记嵌入,2)指示标记在序列中位置的固定位置嵌入,以及3)指示成像或非成像模态的可学习片段嵌入。扫描之间的时间间隔用于计算时间距离缩放的自注意力。这是一种灵活的方法,能够处理异步模态、不同序列长度上的不完整性和不规则的时间间隔。

通过概率独立性实现潜在临床特征

从电子健康记录队列中获取了医疗账单编码、药物和实验室检查的事件数据(长达22年)。删除了少于1000次事件的变量,并将医疗账单编码映射到SNOMED-CT本体后,得到了9195个唯一的变量。将每个变量转换为每天的纵向曲线,估算了每天的变量瞬时值。对连续变量使用了平滑插值,对事件数据使用了每个时间段的事件密度的连续估算。以前的研究使用了高斯过程推理来计算这两种类型的曲线。对于这项工作,我们为了提高计算效率而牺牲了近似值。为了将有限的记忆编码到曲线值中,每个曲线都使用了过去365天的滚动均匀平均值进行平滑处理。我们使用ICA模型来估算从EHR-肺部队列中观察到的曲线到独立的潜在源,即临床签名的线性分解。形式上,我们有数据集DEHR-肺部={Lk | k=1,…,n},其中纵向曲线表示为Lk={li | i=1,…,9195}。我们以三年的分辨率随机采样li ∀i∈[1,9195],并将所有主体的样本连接为xi ∈ Rm。对于DEHR-肺部,经验性地发现m为630037。我们做出了一个简化的假设,即xi是c个潜在来源s的线性混合,具有纵向表达水平e∈Rm。
在这里插入图片描述

Longitudinal Multimodal Transformer (TDSig)

将多模态数据集DImage-EHR和DImage-EHR-SPN表示为临床表达Ek = {ek,1,…,ek,T}和图像Gk = {gk,1,…,gk,T}的序列,其中T是最大的序列长度。设定T = 3,并添加了一个固定的填充嵌入来表示序列中的缺失项目。对于序列中的每个项目,计算包含位置和段信息的嵌入。图像的标记嵌入是由一个预训练的SPN检测模型提出的五个连接的3D块的卷积嵌入。我们使用一个16层的ResNet来计算这个嵌入。同样,临床特征表达的标记嵌入是对与图像标记嵌入相同维度的线性变换。然后将嵌入序列通过一个多头变压器进行传递。除了结节检测模型外,所有的嵌入都与变压器一起进行联合优化。我们将这种方法称为TDSig。

时间-距离 自注意力

使用时间重点模型(TEM)来强调最近观察结果的重要性,而不是旧的观察结果。此外,对于填充的嵌入,自注意力被屏蔽,能够适应不同主体之间的序列长度变化。形式上,如果主体k在相对获取的日期t1 …tT有一个长度为T的序列图像,我们构建一个相对时间矩阵R,其中条目Ri,j = |tT − ti|,其中ti是令牌ˆek,i和ˆgk,i的获取日期,或者如果它们是填充的嵌入,则为0。我们使用形式为的TEM将R中的相对时间映射到Rˆ中的[0,1]值:
在这里插入图片描述

这是一个翻转的sigmoid函数,它随着相对时间从最近观察到现在单调递减。它的下降斜率和下降偏移由可学习的非负参数b和c控制。为每个注意力头实例化了一个单独的TEM,理由是单独的注意力头可以学习以不同的方式对时间进行条件判断。变压器编码器将查询、键和值矩阵计算为输入嵌入H = {Eˆ,Gˆ}的线性变换,其中p为注意力头索引。

在这里插入图片描述
在这里插入图片描述
其中 M 是填充掩码,d 是查询和键矩阵的维度。查询键产品的 ReLU 门控允许 TEM 在无符号方向上调整注意力权重

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于用于肺结节分类的常规 EHR 的纵向多模态Transformer集成成像和潜在临床特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937644

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2