OpenCV 实现霍夫圆变换

2024-04-26 06:12
文章标签 实现 opencv 变换 霍夫

本文主要是介绍OpenCV 实现霍夫圆变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

返回:OpenCV系列文章目录(持续更新中......)

上一篇:OpenCV实现霍夫变换
下一篇 :OpenCV系列文章目录(持续更新中......)

目标

在本教程中,您将学习如何:

  • 使用 OpenCV 函数 HoughCircles()检测图像中的圆圈。

理论

Hough 圆变换

  • Hough Circle 变换的工作方式与上一教程中介绍的 Hough Line 变换大致相似。
  • 在线路检测情况下,一条线路由两个参数 (r,Q)定义。在圆的情况下,我们需要三个参数来定义一个圆:

    其中 (xcenter,ycenter)定义中心位置(绿点,),r是半径,这让我们可以完全定义一个圆,如下图所示:

  • 为了提高效率,OpenCV 实现了一种比标准 Hough 变换稍微棘手的检测方法:Hough 梯度方法,它由两个主要阶段组成。第一阶段涉及边缘检测和查找可能的圆心,第二阶段为每个候选中心找到最佳半径。有关更多详细信息,请查看《学习 OpenCV》一书或您最喜欢的计算机视觉参考书目
  • 这个程序是做什么的?

  • 加载图像并对其进行模糊处理以减少噪点
  • 将 Hough Circle 变换应用于模糊图像。
  • 在窗口中显示检测到的圆圈。

C++代码

我们将要解释的示例代码可以从这里下载。可以在此处找到一个稍微花哨的版本(显示用于更改阈值的跟踪栏)。

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"using namespace cv;
using namespace std;int main(int argc, char** argv)
{const char* filename = argc >=2 ? argv[1] : "smarties.png";// Loads an imageMat src = imread( samples::findFile( filename ), IMREAD_COLOR );// Check if image is loaded fineif(src.empty()){printf(" Error opening image\n");printf(" Program Arguments: [image_name -- default %s] \n", filename);return EXIT_FAILURE;}Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);medianBlur(gray, gray, 5);vector<Vec3f> circles;HoughCircles(gray, circles, HOUGH_GRADIENT, 1,gray.rows/16, // change this value to detect circles with different distances to each other100, 30, 1, 30 // change the last two parameters// (min_radius & max_radius) to detect larger circles);for( size_t i = 0; i < circles.size(); i++ ){Vec3i c = circles[i];Point center = Point(c[0], c[1]);// circle centercircle( src, center, 1, Scalar(0,100,100), 3, LINE_AA);// circle outlineint radius = c[2];circle( src, center, radius, Scalar(255,0,255), 3, LINE_AA);}imshow("detected circles", src);waitKey();return EXIT_SUCCESS;
}

解释

我们使用的图像可以在这里找到

加载图像:

 const char* filename = argc >=2 ? argv[1] : "smarties.png";// Loads an imageMat src = imread( samples::findFile( filename ), IMREAD_COLOR );// Check if image is loaded fineif(src.empty()){printf(" Error opening image\n");printf(" Program Arguments: [image_name -- default %s] \n", filename);return EXIT_FAILURE;}

将其转换为灰度:

 Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);

应用中值模糊以减少噪点并避免误圆检测:

 medianBlur(gray, gray, 5);

继续应用 Hough Circle 变换:

 vector<Vec3f> circles;HoughCircles(gray, circles, HOUGH_GRADIENT, 1,gray.rows/16, // change this value to detect circles with different distances to each other100, 30, 1, 30 // change the last two parameters// (min_radius & max_radius) to detect larger circles);
  • 带有参数:
    • 灰色:输入图像(灰度)。
    • circles:存储 3 个值集的向量:xc1,yc1 对于每个检测到的圆。
    • HOUGH_GRADIENT:定义检测方法。目前,这是 OpenCV 中唯一可用的。
    • dp = 1:分辨率的倒比。
    • min_dist = gray.rows/16:检测到的中心之间的最小距离。
    • param_1 = 200:内部 Canny 边缘检测器的上限阈值。
    • param_2 = 100*:中心检测的阈值。
    • min_radius = 0:要检测的最小半径。如果未知,则将零作为默认值。
    • max_radius = 0:要检测的最大半径。如果未知,则将零作为默认值。

绘制检测到的圆圈:

 for( size_t i = 0; i < circles.size(); i++ ){Vec3i c = circles[i];Point center = Point(c[0], c[1]);// circle centercircle( src, center, 1, Scalar(0,100,100), 3, LINE_AA);// circle outlineint radius = c[2];circle( src, center, radius, Scalar(255,0,255), 3, LINE_AA);}

你可以看到,我们将用红色画圆圈,用一个小绿点画中心

显示检测到的圆圈并等待用户退出程序:

 imshow("detected circles", src);waitKey();

结果

使用测试图像运行上述代码的结果如下所示:


参考文献:

1、《Hough Circle Transform》------Ana Huamán

这篇关于OpenCV 实现霍夫圆变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936835

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核