OpenCV 实现霍夫圆变换

2024-04-26 06:12
文章标签 实现 opencv 变换 霍夫

本文主要是介绍OpenCV 实现霍夫圆变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

返回:OpenCV系列文章目录(持续更新中......)

上一篇:OpenCV实现霍夫变换
下一篇 :OpenCV系列文章目录(持续更新中......)

目标

在本教程中,您将学习如何:

  • 使用 OpenCV 函数 HoughCircles()检测图像中的圆圈。

理论

Hough 圆变换

  • Hough Circle 变换的工作方式与上一教程中介绍的 Hough Line 变换大致相似。
  • 在线路检测情况下,一条线路由两个参数 (r,Q)定义。在圆的情况下,我们需要三个参数来定义一个圆:

    其中 (xcenter,ycenter)定义中心位置(绿点,),r是半径,这让我们可以完全定义一个圆,如下图所示:

  • 为了提高效率,OpenCV 实现了一种比标准 Hough 变换稍微棘手的检测方法:Hough 梯度方法,它由两个主要阶段组成。第一阶段涉及边缘检测和查找可能的圆心,第二阶段为每个候选中心找到最佳半径。有关更多详细信息,请查看《学习 OpenCV》一书或您最喜欢的计算机视觉参考书目
  • 这个程序是做什么的?

  • 加载图像并对其进行模糊处理以减少噪点
  • 将 Hough Circle 变换应用于模糊图像。
  • 在窗口中显示检测到的圆圈。

C++代码

我们将要解释的示例代码可以从这里下载。可以在此处找到一个稍微花哨的版本(显示用于更改阈值的跟踪栏)。

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"using namespace cv;
using namespace std;int main(int argc, char** argv)
{const char* filename = argc >=2 ? argv[1] : "smarties.png";// Loads an imageMat src = imread( samples::findFile( filename ), IMREAD_COLOR );// Check if image is loaded fineif(src.empty()){printf(" Error opening image\n");printf(" Program Arguments: [image_name -- default %s] \n", filename);return EXIT_FAILURE;}Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);medianBlur(gray, gray, 5);vector<Vec3f> circles;HoughCircles(gray, circles, HOUGH_GRADIENT, 1,gray.rows/16, // change this value to detect circles with different distances to each other100, 30, 1, 30 // change the last two parameters// (min_radius & max_radius) to detect larger circles);for( size_t i = 0; i < circles.size(); i++ ){Vec3i c = circles[i];Point center = Point(c[0], c[1]);// circle centercircle( src, center, 1, Scalar(0,100,100), 3, LINE_AA);// circle outlineint radius = c[2];circle( src, center, radius, Scalar(255,0,255), 3, LINE_AA);}imshow("detected circles", src);waitKey();return EXIT_SUCCESS;
}

解释

我们使用的图像可以在这里找到

加载图像:

 const char* filename = argc >=2 ? argv[1] : "smarties.png";// Loads an imageMat src = imread( samples::findFile( filename ), IMREAD_COLOR );// Check if image is loaded fineif(src.empty()){printf(" Error opening image\n");printf(" Program Arguments: [image_name -- default %s] \n", filename);return EXIT_FAILURE;}

将其转换为灰度:

 Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);

应用中值模糊以减少噪点并避免误圆检测:

 medianBlur(gray, gray, 5);

继续应用 Hough Circle 变换:

 vector<Vec3f> circles;HoughCircles(gray, circles, HOUGH_GRADIENT, 1,gray.rows/16, // change this value to detect circles with different distances to each other100, 30, 1, 30 // change the last two parameters// (min_radius & max_radius) to detect larger circles);
  • 带有参数:
    • 灰色:输入图像(灰度)。
    • circles:存储 3 个值集的向量:xc1,yc1 对于每个检测到的圆。
    • HOUGH_GRADIENT:定义检测方法。目前,这是 OpenCV 中唯一可用的。
    • dp = 1:分辨率的倒比。
    • min_dist = gray.rows/16:检测到的中心之间的最小距离。
    • param_1 = 200:内部 Canny 边缘检测器的上限阈值。
    • param_2 = 100*:中心检测的阈值。
    • min_radius = 0:要检测的最小半径。如果未知,则将零作为默认值。
    • max_radius = 0:要检测的最大半径。如果未知,则将零作为默认值。

绘制检测到的圆圈:

 for( size_t i = 0; i < circles.size(); i++ ){Vec3i c = circles[i];Point center = Point(c[0], c[1]);// circle centercircle( src, center, 1, Scalar(0,100,100), 3, LINE_AA);// circle outlineint radius = c[2];circle( src, center, radius, Scalar(255,0,255), 3, LINE_AA);}

你可以看到,我们将用红色画圆圈,用一个小绿点画中心

显示检测到的圆圈并等待用户退出程序:

 imshow("detected circles", src);waitKey();

结果

使用测试图像运行上述代码的结果如下所示:


参考文献:

1、《Hough Circle Transform》------Ana Huamán

这篇关于OpenCV 实现霍夫圆变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936835

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S