Day51:动态规划 LeedCode 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组

本文主要是介绍Day51:动态规划 LeedCode 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

300. 最长递增子序列

中等

相关标签

相关企业

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的

子序列

。 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

思路:

动态规划五部曲:

1.dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

2.状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

3.初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

为什么不仅仅设置dp[0]=1?

因为在之前有比当前nums[i]小的数时,dp[i]才被赋值,如果前面都没比nums[i]小的数,dp[i]就等于初始值,这个初始值应该为1,因为此时以Nums[i]结尾的子串长度为1

if(nums[i]>nums[j])
            dp[i]=Math.max(dp[i],dp[j]+1);

4.确定遍历顺序

dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历

5.举例

代码参考:

class Solution {public int lengthOfLIS(int[] nums) {int[] dp=new int[nums.length];//初始化for(int i=0;i<nums.length;i++){dp[i]=1;}for(int i=1;i<nums.length;i++){for(int j=0;j<i;j++){if(nums[i]>nums[j])dp[i]=Math.max(dp[i],dp[j]+1);}}//取最长长度int result=0;for(int i=0;i<dp.length;i++){result=Math.max(result,dp[i]);}return result;}
}

674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

思路:

与上题相比,本题多了一个要求:连续!

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾连续递增的子序列长度为dp[i]

2.确定递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

3.dp数组如何初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

4.确定遍历顺序

dp[i + 1]依赖dp[i],所以一定是从前向后遍历

5.举例

代码参考:

class Solution {public int findLengthOfLCIS(int[] nums) {int[] dp=new int[nums.length];//初始化for(int i=0;i<nums.length;i++){dp[i]=1;}int result=1;for(int i=1;i<nums.length;i++){if(nums[i]>nums[i-1]){dp[i]=dp[i-1]+1;}result=Math.max(result,dp[i]);}return result;}
}

718. 最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

思路:

动态规划五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i 为结尾的A,和以下标j 为结尾的B,最长重复子数组长度为dp[i][j]。 

为什么用二维数组表示?

因为两个子串重复子串的位置在两个子串中可能不同

2.确定递推公式

当A[i ] 和B[j ]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

3.dp数组如何初始化

dp[i][0] 和dp[0][j]都要初始化

   int result=0;for(int i=0;i<nums1.length;i++){if(nums1[i]==nums2[0]){dp[i][0]=1;}result=Math.max(result,dp[i][0]);}for(int i=0;i<nums2.length;i++){if(nums2[i]==nums1[0]){dp[0][i]=1;}result=Math.max(result,dp[0][i]);}

4.确定遍历顺序

外层for循环遍历A,内层for循环遍历B,互换也行

   for(int i=1;i<nums1.length;i++){for(int j=1;j<nums2.length;j++){if(nums1[i]==nums2[j]){dp[i][j]=dp[i-1][j-1]+1;}result=Math.max(result,dp[i][j]);}}

5.举例

代码参考:

class Solution {public int findLength(int[] nums1, int[] nums2) {int[][] dp=new int[nums1.length][nums2.length];//初始化int result=0;for(int i=0;i<nums1.length;i++){if(nums1[i]==nums2[0]){dp[i][0]=1;}result=Math.max(result,dp[i][0]);}for(int i=0;i<nums2.length;i++){if(nums2[i]==nums1[0]){dp[0][i]=1;}result=Math.max(result,dp[0][i]);}//更新dp数组and resultfor(int i=1;i<nums1.length;i++){for(int j=1;j<nums2.length;j++){if(nums1[i]==nums2[j]){dp[i][j]=dp[i-1][j-1]+1;}result=Math.max(result,dp[i][j]);}}return result;}
}

这篇关于Day51:动态规划 LeedCode 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936586

相关文章

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可