yolact模型推理导出ONNX环境搭建

2024-04-26 03:18

本文主要是介绍yolact模型推理导出ONNX环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文使用的anaconda安装版本是:

anaconda下keras&tensorflow @ubuntu18.04开发环境安装_tugouxp的专栏-CSDN博客前面尝试在windows10上安装keras&tensorflow开发环境,总体上感觉还是比较麻烦的,今天抽时间在ubuntu18.04上安装了一把,很快就搞定了回归训练的模型,发现anaconda对Linux环境是比较友好的,以后可以在Linux下干活了。现在简要介绍一下搭建环境并执行回归训练用例的过程下载anaconda我选择的版本是https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.shhttps:/https://blog.csdn.net/tugouxp/article/details/120464891?spm=1001.2014.3001.5502yolact下载地址:

git clone https://github.com/dbolya/yolact.git

安装环境:

cd yolact,执行

conda env create -f environment.yml

下载模型权重:

运行测试用例:

python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=/home/czl/images/:/home/czl/out

添加上--cuda=False也于事无补。

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/darknet/data/dog.jpg:output3.jpg

似乎走到的死胡同。

由于我们下载的是非GPU版本的pytorch,所以出现了上图中的错误,接下来换一套CPU版本的yolact环境尝试一下,yolact CPU版本的实现在另一个地址:

git clone -b add-evaluation-without-cuda-support https://github.com/ar90n/yolact.git

 将权重文件拷贝过来:

执行conda activate yolact-env激活anaconda yolact环境,再次执行命令:

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/darknet/data/dog.jpg:output3.jpg

命令成功执行,输出的图片为output3.jpg,打开后结果如下:

换一张图片测试:

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/Workspace/ncnn-origin/ncnn/build/examples/beauty.jpg:girl.jpeg

 针对这张图片的召回率和精度有些问题,只框出了一位美女,并且手机也识别错了。

图像:

car.jpeg

导出ONNX模型

根据网上的资料,将代码修改后导出ONNX模型:

diff --git a/eval.py b/eval.py
index e295093..10675d2 100644
--- a/eval.py
+++ b/eval.py
@@ -569,17 +569,19 @@ def evalimage(net:Yolact, path:str, save_path:str=None):batch = FastBaseTransform()(frame.unsqueeze(0))preds = net(batch)-    img_numpy = prep_display(preds, frame, None, None, undo_transform=False)
-    
-    if save_path is None:
-        img_numpy = img_numpy[:, :, (2, 1, 0)]
+    torch.onnx._export(net, batch, "yolact.onnx", export_params=True, keep_initializers_as_inputs=True, opset_version=11)-    if save_path is None:
-        plt.imshow(img_numpy)
-        plt.title(path)
-        plt.show()
-    else:
-        cv2.imwrite(save_path, img_numpy)
+    # img_numpy = prep_display(preds, frame, None, None, undo_transform=False)
+
+    # if save_path is None:
+        # img_numpy = img_numpy[:, :, (2, 1, 0)]
+
+    # if save_path is None:
+        # plt.imshow(img_numpy)
+        # plt.title(path)
+        # plt.show()
+    # else:
+        # cv2.imwrite(save_path, img_numpy)def evalimages(net:Yolact, input_folder:str, output_folder:str):if not os.path.exists(output_folder):
diff --git a/yolact.py b/yolact.py
index c1a5b3f..d45d2c0 100644
--- a/yolact.py
+++ b/yolact.py
@@ -23,7 +23,8 @@ if torch.cuda.is_available():torch.cuda.current_device()# As of March 10, 2019, Pytorch DataParallel still doesn't support JIT Script Modules
-use_jit = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
+#use_jit = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
+use_jit = Falseif not use_jit:print('Multiple GPUs detected! Turning off JIT.')@@ -616,7 +617,7 @@ class Yolact(nn.Module):else:pred_outs['conf'] = F.softmax(pred_outs['conf'], -1)-            return self.detect(pred_outs)
+            return pred_outs

之后运行命令:

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg

最终生成了ONNX格式的YOLACT模型文件:

端侧部署

将上一步生成的yolact.onnx模型部署到某款NPU上,仿真端跑出的结果,与原来相比,精度略有损失.

而且看trunk目标,显然存在这个区域内识别除了两个目标,从打印也可以看出来:

 可以看到,还有一个置信度为57%的目标被识别出来,这就很奇怪了,从绘制的框可以看出,很明显两个框的IOU已经非常非常高了,几乎重合,不仔细看几乎看不出来是两个框,为何NMS去重时没有去掉其中一个呢?

原来NMS去重的前提是识别的是同一类目标,如果目标不是同一类,即便两个框完全一样,也是都要数出来的.根据上图的打印可以看出,这个范围识别出来的两个目标class id是不同的,分别是3和8,这就不足为奇了。

如何提高精度:

RGB数据送入网络前,要经过前处理归一化,之后再进行量化,所以,送入网络的是量化的数据。这里面可以操作的是归一化参数,上面的推理,我们默认使用了归一化参数为 0 和 0.0039,这样0-256范围的RGB数据经过处理后变为了0-1区间,效果既然不好,我们重新调整参数,另一个普遍被使用的归一化系数(实际上由训练的数据集决定)为:103.94, 116.78, 123.68. 0.017423.我们用它进行尝试:

置信度大大提高,狗的的识别出现了误识别情况,这可能和我导出的模型有关了。

关于这些归一化参数的来源,可以参考原始代码的config.py文件,可能yolact算法是基于imagenet数据集训练的吧。

pytorch模型格式

.pt,pth,.pkl是pytorch框架支持的输出模型格式,上面介绍的模型用的就是.pth格式的模型文件,如同onnx模型一样,.pth模型也是权重和模型结构描述保存在同一个文件中的。利用netron工具,可以直接打开.pth格式的模型文件,比如,github中的yolact模型实际上提供好几个模型文件,它们的主要区别是模型主干结构不同.

貌似对PTH的支持并不友好,实际上,netron官网给出的支持列表并不包含.pth文件,而是给出的.pt文件,.pt文件是可以看到层间的连接关系的.

这样也可以理解一个问题,就是芯原微的部署工具不支持.pth,但是支持.pt,.pth的模型需要先转换成.pt,才能被部署工具导入,或许原因就在于此吧。

使用其余模型进行推理:

python -m eval --trained_model=./weights/yolact_base_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg

 模型文件yolact_im700_54_800000.pth

python -m eval --trained_model=./weights/yolact_im700_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg

yolact_resnet50_54_800000.pth

python -m eval --trained_model=./weights/yolact_resnet50_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg


结束~! 

这篇关于yolact模型推理导出ONNX环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936576

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

如何使用Haporxy搭建Web群集

《如何使用Haporxy搭建Web群集》Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多如LVS和Nginx,本案例介绍使用Haproxy及Nginx搭建一套Web群集,感兴趣的... 目录一、案例分析1.案例概述2.案例前置知识点2.1 HTTP请求2.2 负载均衡常用调度算法 2.