yolact模型推理导出ONNX环境搭建

2024-04-26 03:18

本文主要是介绍yolact模型推理导出ONNX环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文使用的anaconda安装版本是:

anaconda下keras&tensorflow @ubuntu18.04开发环境安装_tugouxp的专栏-CSDN博客前面尝试在windows10上安装keras&tensorflow开发环境,总体上感觉还是比较麻烦的,今天抽时间在ubuntu18.04上安装了一把,很快就搞定了回归训练的模型,发现anaconda对Linux环境是比较友好的,以后可以在Linux下干活了。现在简要介绍一下搭建环境并执行回归训练用例的过程下载anaconda我选择的版本是https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.shhttps:/https://blog.csdn.net/tugouxp/article/details/120464891?spm=1001.2014.3001.5502yolact下载地址:

git clone https://github.com/dbolya/yolact.git

安装环境:

cd yolact,执行

conda env create -f environment.yml

下载模型权重:

运行测试用例:

python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=/home/czl/images/:/home/czl/out

添加上--cuda=False也于事无补。

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/darknet/data/dog.jpg:output3.jpg

似乎走到的死胡同。

由于我们下载的是非GPU版本的pytorch,所以出现了上图中的错误,接下来换一套CPU版本的yolact环境尝试一下,yolact CPU版本的实现在另一个地址:

git clone -b add-evaluation-without-cuda-support https://github.com/ar90n/yolact.git

 将权重文件拷贝过来:

执行conda activate yolact-env激活anaconda yolact环境,再次执行命令:

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/darknet/data/dog.jpg:output3.jpg

命令成功执行,输出的图片为output3.jpg,打开后结果如下:

换一张图片测试:

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/Workspace/ncnn-origin/ncnn/build/examples/beauty.jpg:girl.jpeg

 针对这张图片的召回率和精度有些问题,只框出了一位美女,并且手机也识别错了。

图像:

car.jpeg

导出ONNX模型

根据网上的资料,将代码修改后导出ONNX模型:

diff --git a/eval.py b/eval.py
index e295093..10675d2 100644
--- a/eval.py
+++ b/eval.py
@@ -569,17 +569,19 @@ def evalimage(net:Yolact, path:str, save_path:str=None):batch = FastBaseTransform()(frame.unsqueeze(0))preds = net(batch)-    img_numpy = prep_display(preds, frame, None, None, undo_transform=False)
-    
-    if save_path is None:
-        img_numpy = img_numpy[:, :, (2, 1, 0)]
+    torch.onnx._export(net, batch, "yolact.onnx", export_params=True, keep_initializers_as_inputs=True, opset_version=11)-    if save_path is None:
-        plt.imshow(img_numpy)
-        plt.title(path)
-        plt.show()
-    else:
-        cv2.imwrite(save_path, img_numpy)
+    # img_numpy = prep_display(preds, frame, None, None, undo_transform=False)
+
+    # if save_path is None:
+        # img_numpy = img_numpy[:, :, (2, 1, 0)]
+
+    # if save_path is None:
+        # plt.imshow(img_numpy)
+        # plt.title(path)
+        # plt.show()
+    # else:
+        # cv2.imwrite(save_path, img_numpy)def evalimages(net:Yolact, input_folder:str, output_folder:str):if not os.path.exists(output_folder):
diff --git a/yolact.py b/yolact.py
index c1a5b3f..d45d2c0 100644
--- a/yolact.py
+++ b/yolact.py
@@ -23,7 +23,8 @@ if torch.cuda.is_available():torch.cuda.current_device()# As of March 10, 2019, Pytorch DataParallel still doesn't support JIT Script Modules
-use_jit = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
+#use_jit = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
+use_jit = Falseif not use_jit:print('Multiple GPUs detected! Turning off JIT.')@@ -616,7 +617,7 @@ class Yolact(nn.Module):else:pred_outs['conf'] = F.softmax(pred_outs['conf'], -1)-            return self.detect(pred_outs)
+            return pred_outs

之后运行命令:

python -m eval --trained_model=./weights/yolact_darknet53_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg

最终生成了ONNX格式的YOLACT模型文件:

端侧部署

将上一步生成的yolact.onnx模型部署到某款NPU上,仿真端跑出的结果,与原来相比,精度略有损失.

而且看trunk目标,显然存在这个区域内识别除了两个目标,从打印也可以看出来:

 可以看到,还有一个置信度为57%的目标被识别出来,这就很奇怪了,从绘制的框可以看出,很明显两个框的IOU已经非常非常高了,几乎重合,不仔细看几乎看不出来是两个框,为何NMS去重时没有去掉其中一个呢?

原来NMS去重的前提是识别的是同一类目标,如果目标不是同一类,即便两个框完全一样,也是都要数出来的.根据上图的打印可以看出,这个范围识别出来的两个目标class id是不同的,分别是3和8,这就不足为奇了。

如何提高精度:

RGB数据送入网络前,要经过前处理归一化,之后再进行量化,所以,送入网络的是量化的数据。这里面可以操作的是归一化参数,上面的推理,我们默认使用了归一化参数为 0 和 0.0039,这样0-256范围的RGB数据经过处理后变为了0-1区间,效果既然不好,我们重新调整参数,另一个普遍被使用的归一化系数(实际上由训练的数据集决定)为:103.94, 116.78, 123.68. 0.017423.我们用它进行尝试:

置信度大大提高,狗的的识别出现了误识别情况,这可能和我导出的模型有关了。

关于这些归一化参数的来源,可以参考原始代码的config.py文件,可能yolact算法是基于imagenet数据集训练的吧。

pytorch模型格式

.pt,pth,.pkl是pytorch框架支持的输出模型格式,上面介绍的模型用的就是.pth格式的模型文件,如同onnx模型一样,.pth模型也是权重和模型结构描述保存在同一个文件中的。利用netron工具,可以直接打开.pth格式的模型文件,比如,github中的yolact模型实际上提供好几个模型文件,它们的主要区别是模型主干结构不同.

貌似对PTH的支持并不友好,实际上,netron官网给出的支持列表并不包含.pth文件,而是给出的.pt文件,.pt文件是可以看到层间的连接关系的.

这样也可以理解一个问题,就是芯原微的部署工具不支持.pth,但是支持.pt,.pth的模型需要先转换成.pt,才能被部署工具导入,或许原因就在于此吧。

使用其余模型进行推理:

python -m eval --trained_model=./weights/yolact_base_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg

 模型文件yolact_im700_54_800000.pth

python -m eval --trained_model=./weights/yolact_im700_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg

yolact_resnet50_54_800000.pth

python -m eval --trained_model=./weights/yolact_resnet50_54_800000.pth --cuda=False --score_threshold=0.4 --top_k=15 --display --image=/home/caozilong/car.jpeg:car.jpeg


结束~! 

这篇关于yolact模型推理导出ONNX环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936576

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结