第十五届蓝桥杯省赛第二场C/C++B组H题【质数变革】题解

2024-04-25 15:04

本文主要是介绍第十五届蓝桥杯省赛第二场C/C++B组H题【质数变革】题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解题思路

首先,我们考虑一下整个数组都是由质数构成的情况。

当我们要将质数 x x x 向后移 k k k 个时,如果我们可以知道质数 x x x 在质数数组的下标 j j j,那么就可以通过 p r i m e s [ j + k ] primes[j + k] primes[j+k] 来获取向后移 k k k 个的质数。因此,我们需要在线性筛预处理时,记录下质数的位置,例如 i d [ 2 ] = 0 id[2] = 0 id[2]=0 i d [ 3 ] = 1 id[3] = 1 id[3]=1 … \dots ,那么上述 j = i d [ x ] j = id[x] j=id[x]

void get_primes(int n)
{st[0] = st[1] = true;for (int i = 2; i <= n; ++ i ){if (!st[i]){id[i] = cnt;primes[cnt ++ ] = i;}for (int j = 0; primes[j] <= n / i; ++ j ){st[primes[j] * i] = true;if (i % primes[j] == 0)break;}}
}

对于 q q q 个操作,如果每个操作都是遍历完成模拟,若有较多的 k = 1 k=1 k=1,时间复杂度会达到 O ( n 2 ) O(n^2) O(n2),是难以接受的。

所以我们可以将所有相等的 k k k 进行一并处理,例如有一个 k k k + 1 +1 +1,一个 k k k + 3 +3 +3,那么就可以一并处理 k k k 位置的 + 4 +4 +4 操作。

for (int i = 1; i <= m; ++ i )
{int op, k, x;cin >> op >> k >> x;if (op == 1)h[k] += x;elseh[k] -= x;
}for (int i = 1; i <= n; ++ i )
{int j = i;while (j <= n){g[j] += h[i];j += i;}
}//	h[i] 表示 k=i 的操作移动次数
//	g[i] 表示对于第 i 个数字的移动次数//	g[i] > 0,则向右移,反之向左移

那么最后对于第 i i i 个质数就向右(向左)移动 g [ i ] g[i] g[i] 个位置,再特判边界,即可解决问题。


好的,接下来我们考虑,数组不全是由质数组成的情况。

我们发现,当数组不全是由质数组成时, i d [ x ] id[x] id[x] 用不了了,因为 x x x 不为质数。

我们考虑解决方法:

  1. 将所有不是质数的数,变为下一个质数,然后将 g [ i ] g[i] g[i] 设置为 − 1 -1 1。意在于先将非质数变为质数,最后再还原,但是如果这个数未被操作到,我们发现,当给这个数进行 − 1 -1 1 时(还原),已经不再是原来的数了,故此方法不可行。
  2. 进行分类讨论:
    • g [ i ] > 0 g[i] > 0 g[i]>0,若 a [ i ] a[i] a[i] 为质数,则正常向右移动即可,反之需要将 a [ i ] a[i] a[i] 改为第一个大于 a [ i ] a[i] a[i] 的质数后再向右移动 g [ i ] − 1 g[i] - 1 g[i]1 个位置。
    • g [ i ] < 0 g[i] < 0 g[i]<0,若 a [ i ] a[i] a[i] 为质数,则正常向左移动即可,反之需要将 a [ i ] a[i] a[i] 改为第一个小于 a [ i ] a[i] a[i] 的质数后再向左移动 − g [ i ] − 1 -g[i] - 1 g[i]1 个单位。
    • g [ i ] = 0 g[i] = 0 g[i]=0,如果 a [ i ] a[i] a[i] 不是质数,那么我们需要记录 a [ i ] a[i] a[i] 是否有经过操作,若无则跳过,反之由于最终 g [ i ] g[i] g[i] 0 0 0,所以一定是经过先加再减,或者是先减再加,所以我们需要记录最后一个操作 a [ i ] a[i] a[i] 的方向,是往左,还是往右,即先减再加或先加再减,若是先加再减,则将 a [ i ] a[i] a[i] 改为第一个小于 a [ i ] a[i] a[i] 的质数,反之将 a [ i ] a[i] a[i] 改为第一个大于 a [ i ] a[i] a[i] 的质数。

对于上述的操作:将 x x x 改为第一个大于(小于) x x x 的质数,我们可以使用二分算法实现。

另外需要注意的点,当最终整数大于 1 0 6 10^6 106 时,需要置为 1 1 1,为负数则置为 0 0 0

执行 get_nex 时,为防止出现大于 1 0 6 10^6 106 的质数越界,故可以在线性筛时,额外多筛些许。

执行 get_pre 之前,我们会发现当 x = 1 x = 1 x=1 时,上一个应该为 − 2 -2 2,而我们的质数数组不存在 − 2 -2 2,故在调用函数之前,需要对 x = 1 x = 1 x=1 进行特判。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <stack>using namespace std;const int N = 1.1e6 + 10;int n, m, cnt;
int a[N];
int primes[N];
int id[N];
bool st[N];
int h[N];
int op_id[N];
bool is_minus[N];
int g[N];
int last_op[N];void get_primes(int n)
{st[0] = st[1] = true;for (int i = 2; i <= n; ++ i ){if (!st[i]){id[i] = cnt;primes[cnt ++ ] = i;}for (int j = 0; primes[j] <= n / i; ++ j ){st[primes[j] * i] = true;if (i % primes[j] == 0)break;}}
}int get_pre(int x)
{int l = 0, r = cnt - 1;while (l < r){int mid = l + r + 1 >> 1;if (primes[mid] < x)l = mid;elser = mid - 1;}return primes[l];
}int get_nex(int x)
{int l = 0, r = cnt - 1;while (l < r){int mid = l + r >> 1;if (primes[mid] > x)r = mid;elsel = mid + 1;}return primes[l];
}int main()
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);cin >> n >> m;for (int i = 1; i <= n; ++ i )cin >> a[i];get_primes(1100000);for (int i = 1; i <= m; ++ i ){int op, k, x;cin >> op >> k >> x;if (op == 1)h[k] += x;elseh[k] -= x, is_minus[i] = true;op_id[k] = i;}for (int i = 1; i <= n; ++ i ){int j = i;while (j <= n){g[j] += h[i];last_op[j] = max(last_op[j], op_id[i]);j += i;}}for (int i = 1; i <= n; ++ i )if (g[i] > 0){if (st[a[i]]){g[i] --;a[i] = get_nex(a[i]);}int j = id[a[i]];j += g[i];if (j >= cnt || primes[j] > 1000000)a[i] = 1;elsea[i] = primes[j];}else if (g[i] < 0){if (st[a[i]]){g[i] ++;if (a[i] == 1){a[i] = 0;continue;}a[i] = get_pre(a[i]);}int j = id[a[i]];j += g[i];if (j < 0)a[i] = 0;elsea[i] = primes[j];}else if (st[a[i]]){int j = last_op[i];if (j){if (is_minus[j]){if (a[i] == 1)a[i] = 0;elsea[i] = get_pre(a[i]);}else{a[i] = get_nex(a[i]);if (a[i] >= 1000000)a[i] = 1;}}}for (int i = 1; i <= n; ++ i )cout << a[i] << ' ';cout << endl;return 0;
}

这篇关于第十五届蓝桥杯省赛第二场C/C++B组H题【质数变革】题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935011

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y