第十五届蓝桥杯省赛第二场C/C++B组H题【质数变革】题解

2024-04-25 15:04

本文主要是介绍第十五届蓝桥杯省赛第二场C/C++B组H题【质数变革】题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解题思路

首先,我们考虑一下整个数组都是由质数构成的情况。

当我们要将质数 x x x 向后移 k k k 个时,如果我们可以知道质数 x x x 在质数数组的下标 j j j,那么就可以通过 p r i m e s [ j + k ] primes[j + k] primes[j+k] 来获取向后移 k k k 个的质数。因此,我们需要在线性筛预处理时,记录下质数的位置,例如 i d [ 2 ] = 0 id[2] = 0 id[2]=0 i d [ 3 ] = 1 id[3] = 1 id[3]=1 … \dots ,那么上述 j = i d [ x ] j = id[x] j=id[x]

void get_primes(int n)
{st[0] = st[1] = true;for (int i = 2; i <= n; ++ i ){if (!st[i]){id[i] = cnt;primes[cnt ++ ] = i;}for (int j = 0; primes[j] <= n / i; ++ j ){st[primes[j] * i] = true;if (i % primes[j] == 0)break;}}
}

对于 q q q 个操作,如果每个操作都是遍历完成模拟,若有较多的 k = 1 k=1 k=1,时间复杂度会达到 O ( n 2 ) O(n^2) O(n2),是难以接受的。

所以我们可以将所有相等的 k k k 进行一并处理,例如有一个 k k k + 1 +1 +1,一个 k k k + 3 +3 +3,那么就可以一并处理 k k k 位置的 + 4 +4 +4 操作。

for (int i = 1; i <= m; ++ i )
{int op, k, x;cin >> op >> k >> x;if (op == 1)h[k] += x;elseh[k] -= x;
}for (int i = 1; i <= n; ++ i )
{int j = i;while (j <= n){g[j] += h[i];j += i;}
}//	h[i] 表示 k=i 的操作移动次数
//	g[i] 表示对于第 i 个数字的移动次数//	g[i] > 0,则向右移,反之向左移

那么最后对于第 i i i 个质数就向右(向左)移动 g [ i ] g[i] g[i] 个位置,再特判边界,即可解决问题。


好的,接下来我们考虑,数组不全是由质数组成的情况。

我们发现,当数组不全是由质数组成时, i d [ x ] id[x] id[x] 用不了了,因为 x x x 不为质数。

我们考虑解决方法:

  1. 将所有不是质数的数,变为下一个质数,然后将 g [ i ] g[i] g[i] 设置为 − 1 -1 1。意在于先将非质数变为质数,最后再还原,但是如果这个数未被操作到,我们发现,当给这个数进行 − 1 -1 1 时(还原),已经不再是原来的数了,故此方法不可行。
  2. 进行分类讨论:
    • g [ i ] > 0 g[i] > 0 g[i]>0,若 a [ i ] a[i] a[i] 为质数,则正常向右移动即可,反之需要将 a [ i ] a[i] a[i] 改为第一个大于 a [ i ] a[i] a[i] 的质数后再向右移动 g [ i ] − 1 g[i] - 1 g[i]1 个位置。
    • g [ i ] < 0 g[i] < 0 g[i]<0,若 a [ i ] a[i] a[i] 为质数,则正常向左移动即可,反之需要将 a [ i ] a[i] a[i] 改为第一个小于 a [ i ] a[i] a[i] 的质数后再向左移动 − g [ i ] − 1 -g[i] - 1 g[i]1 个单位。
    • g [ i ] = 0 g[i] = 0 g[i]=0,如果 a [ i ] a[i] a[i] 不是质数,那么我们需要记录 a [ i ] a[i] a[i] 是否有经过操作,若无则跳过,反之由于最终 g [ i ] g[i] g[i] 0 0 0,所以一定是经过先加再减,或者是先减再加,所以我们需要记录最后一个操作 a [ i ] a[i] a[i] 的方向,是往左,还是往右,即先减再加或先加再减,若是先加再减,则将 a [ i ] a[i] a[i] 改为第一个小于 a [ i ] a[i] a[i] 的质数,反之将 a [ i ] a[i] a[i] 改为第一个大于 a [ i ] a[i] a[i] 的质数。

对于上述的操作:将 x x x 改为第一个大于(小于) x x x 的质数,我们可以使用二分算法实现。

另外需要注意的点,当最终整数大于 1 0 6 10^6 106 时,需要置为 1 1 1,为负数则置为 0 0 0

执行 get_nex 时,为防止出现大于 1 0 6 10^6 106 的质数越界,故可以在线性筛时,额外多筛些许。

执行 get_pre 之前,我们会发现当 x = 1 x = 1 x=1 时,上一个应该为 − 2 -2 2,而我们的质数数组不存在 − 2 -2 2,故在调用函数之前,需要对 x = 1 x = 1 x=1 进行特判。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <stack>using namespace std;const int N = 1.1e6 + 10;int n, m, cnt;
int a[N];
int primes[N];
int id[N];
bool st[N];
int h[N];
int op_id[N];
bool is_minus[N];
int g[N];
int last_op[N];void get_primes(int n)
{st[0] = st[1] = true;for (int i = 2; i <= n; ++ i ){if (!st[i]){id[i] = cnt;primes[cnt ++ ] = i;}for (int j = 0; primes[j] <= n / i; ++ j ){st[primes[j] * i] = true;if (i % primes[j] == 0)break;}}
}int get_pre(int x)
{int l = 0, r = cnt - 1;while (l < r){int mid = l + r + 1 >> 1;if (primes[mid] < x)l = mid;elser = mid - 1;}return primes[l];
}int get_nex(int x)
{int l = 0, r = cnt - 1;while (l < r){int mid = l + r >> 1;if (primes[mid] > x)r = mid;elsel = mid + 1;}return primes[l];
}int main()
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);cin >> n >> m;for (int i = 1; i <= n; ++ i )cin >> a[i];get_primes(1100000);for (int i = 1; i <= m; ++ i ){int op, k, x;cin >> op >> k >> x;if (op == 1)h[k] += x;elseh[k] -= x, is_minus[i] = true;op_id[k] = i;}for (int i = 1; i <= n; ++ i ){int j = i;while (j <= n){g[j] += h[i];last_op[j] = max(last_op[j], op_id[i]);j += i;}}for (int i = 1; i <= n; ++ i )if (g[i] > 0){if (st[a[i]]){g[i] --;a[i] = get_nex(a[i]);}int j = id[a[i]];j += g[i];if (j >= cnt || primes[j] > 1000000)a[i] = 1;elsea[i] = primes[j];}else if (g[i] < 0){if (st[a[i]]){g[i] ++;if (a[i] == 1){a[i] = 0;continue;}a[i] = get_pre(a[i]);}int j = id[a[i]];j += g[i];if (j < 0)a[i] = 0;elsea[i] = primes[j];}else if (st[a[i]]){int j = last_op[i];if (j){if (is_minus[j]){if (a[i] == 1)a[i] = 0;elsea[i] = get_pre(a[i]);}else{a[i] = get_nex(a[i]);if (a[i] >= 1000000)a[i] = 1;}}}for (int i = 1; i <= n; ++ i )cout << a[i] << ' ';cout << endl;return 0;
}

这篇关于第十五届蓝桥杯省赛第二场C/C++B组H题【质数变革】题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935011

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c