探索在Apache SeaTunnel上使用Hudi连接器,高效管理大数据的技术

本文主要是介绍探索在Apache SeaTunnel上使用Hudi连接器,高效管理大数据的技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Hudi是一个数据湖处理框架,通过提供简单的方式来进行数据的插入、更新和删除操作,Hudi能够帮助数据工程师和科学家更高效地处理大数据,并支持实时查询。

file

支持的处理引擎

Spark
Flink
SeaTunnel Zeta

主要特性

  • 批处理
  • 流处理
  • 精确一次性
  • 列投影
  • 并行处理
  • 支持用户自定义切分

描述

Hudi Source 连接器专为从Apache Hudi管理的数据湖中读取数据而设计。目前,它支持Hudi COW(Copy on Write)表和批处理模式下的快照查询。

为了使用此连接器,您必须确保您的Spark/Flink集群已集成Hive。已测试的Hive版本为2.3.9。

Apache Hudi解决了数据湖在数据频繁变更时面临的数据管理问题,如数据同步延迟、复杂的数据管道维护和高成本的数据存储。通过使用Hudi,组织能够简化数据的插入、更新和删除操作,同时支持近实时的数据查询和分析,极大提高了数据处理的灵活性和效率。

支持的数据源信息

Tip

  • 目前仅支持Hudi COW表和批处理模式下的快照查询

数据类型映射

Hudi数据类型SeaTunnel数据类型
所有类型STRING

源选项

名称类型是否必须默认值描述
table.pathString-Hudi表的HDFS根路径,例如 'hdfs://nameservice/data/hudi/hudi_table/'。
table.typeString-Hudi表的类型。目前我们仅支持 'cow','mor' 尚未支持。
conf.filesString-环境配置文件路径列表(本地路径),用于初始化HDFS客户端以读取Hudi表文件。示例为 '/home/test/hdfs-site.xml;/home/test/core-site.xml;/home/test/yarn-site.xml'。
use.kerberosboolfalse是否启用Kerberos,默认为false。
kerberos.principalString当use.kerberos为true时必须-使用Kerberos时,我们应设置Kerberos主体,例如 'test_user@xxx'。
kerberos.principal.filestring当use.kerberos为true时必须-使用Kerberos时,我们应设置Kerberos主体文件,例如 '/home/test/test_user.keytab'。
common-optionsconfig-源插件通用参数,详细信息请参阅源通用选项。

任务示例

简单示例:

此示例从一个Hudi COW表读取数据,并为环境配置Kerberos,输出到控制台。

# 定义运行环境
env {# 在此处设置flink配置execution.parallelism = 2job.mode = "BATCH"
}
source{Hudi {table.path = "hdfs://nameservice/data/hudi/hudi_table/"table.type = "cow"conf.files = "/home/test/hdfs-site.xml;/home/test/core-site.xml;/home/test/yarn-site.xml"use.kerberos = truekerberos.principal = "test_user@xxx"kerberos.principal.file = "/home/test/test_user.keytab"}
}transform {# 如果您希望了解更多关于配置SeaTunnel及其插件的信息,# 请访问 https://seatunnel.apache.org/docs/transform-v2/sql/
}sink {Console {}
}

通过使用Apache Hudi和其源连接器,企业可以实现更高效、更灵活的大数据管理和分析,帮助开发者解决在数据湖环境下常见的数据同步与查询挑战。

本文由 白鲸开源科技 提供发布支持!

这篇关于探索在Apache SeaTunnel上使用Hudi连接器,高效管理大数据的技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934996

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符