穿越障碍:最小路径和的高效算法比较【python力扣题64】

2024-04-25 12:36

本文主要是介绍穿越障碍:最小路径和的高效算法比较【python力扣题64】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个包含非负整数的 m x n 网格 grid,现在你需要找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

:每次只能向下或者向右移动一步。

输入格式
  • grid:二维数组,其中的元素表示网格中的点的值。
输出格式
  • 返回一个整数,表示所有可能路径中的最小和。

示例

示例 1
输入: grid = [[1,3,1],[1,5,1],[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
示例 2
输入: grid = [[1,2,3],[4,5,6]
]
输出: 12

方法一:动态规划

解题步骤
  1. 定义状态:创建一个同样大小的二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的最小路径和。
  2. 初始化状态:第一行和第一列的元素只能由它的左边或上边来,所以是累加当前行或列的值。
  3. 状态转移:对于其他位置,dp[i][j] 由它的左边和上边的较小值加上当前网格值得到,即 dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
  4. 返回结果dp[m-1][n-1] 即为最小路径和。
完整的规范代码
def minPathSum(grid):"""使用动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [[0]*n for _ in range(m)]dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]return dp[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:只用一个长度为 n 的数组来保存当前行的 dp 值。
  2. 迭代更新:每次更新时,dp[j] 更新为 dp[j](从上一行继承下来的,即上方)和 dp[j-1](当前行左边的,即左方)中的较小值加上当前点的值。
完整的规范代码
def minPathSum(grid):"""使用一维数组进行动态规划,空间优化版本:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [0] * ndp[0] = grid[0][0]for j in range(1, n):dp[j] = dp[j-1] + grid[0][j]for i in range(1, m):dp[0] += grid[i][0]for j in range(1, n):dp[j] = min(dp[j-1], dp[j]) + grid[i][j]return dp[n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(n)),使用了一个长度为列数 n 的数组。

方法三:递归 + 记忆化

解题步骤
  1. 递归定义:定义一个递归函数,用于计算到达 (i, j) 的最小路径和。
  2. 记忆化存储:使用一个字典或数组来存储已经计算过的结果,避免重复计算。
完整的规范代码
def minPathSum(grid):"""使用递归和记忆化搜索解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""from functools import lru_cachem, n = len(grid), len(grid[0])@lru_cache(None)def dfs(i, j):if i == 0 and j == 0:return grid[i][j]if i < 0 or j < 0:return float('inf')return grid[i][j] + min(dfs(i-1, j), dfs(i, j-1))return dfs(m-1, n-1)# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),每个点最多计算一次,利用记忆化避免重复计算。
  • 空间复杂度:(O(m * n)),记忆化需要的空间。

方法四:从终点到起点的动态规划

解题步骤
  1. 反向动态规划:从网格的右下角开始,向左上角逐步计算。
  2. 更新规则:每个点的最小路径和取决于其右边和下边的点的最小路径和。
完整的规范代码
def minPathSum(grid):"""使用反向动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])for i in range(m-2, -1, -1):grid[i][n-1] += grid[i+1][n-1]for j in range(n-2, -1, -1):grid[m-1][j] += grid[m-1][j+1]for i in range(m-2, -1, -1):for j in range(n-2, -1, -1):grid[i][j] += min(grid[i+1][j], grid[i][j+1])return grid[0][0]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(1)),直接在输入网格上进行修改,不需要额外空间。

方法五:改进的BFS

解题步骤
  1. 队列实现BFS:使用队列来实现广度优先搜索,每次处理一层。
  2. 累计最小和:使用额外的二维数组来保存到每个点的最小路径和。
  3. 优先队列优化:使用优先队列(小顶堆)来优先处理当前路径和最小的节点,以快速找到最小路径和。
完整的规范代码
from heapq import heappush, heappopdef minPathSum(grid):"""使用改进的BFS和优先队列解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])minHeap = [(grid[0][0], 0, 0)]  # (cost, x, y)costs = [[float('inf')] * n for _ in range(m)]costs[0][0] = grid[0][0]while minHeap:cost, x, y = heappop(minHeap)for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:new_cost = cost + grid[nx][ny]if new_cost < costs[nx][ny]:costs[nx][ny] = new_costheappush(minHeap, (new_cost, nx, ny))return costs[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n \log(m * n))),每个节点可能多次进入堆。
  • 空间复杂度:(O(m * n)),用于存储路径成本和堆结构。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 递归+记忆化方法四: 反向DP方法五: BFS+优先队列
时间复杂度(O(m * n))(O(m * n))(O(m * n))(O(m * n))(O(m * n \log(m * n)))
空间复杂度(O(m * n))(O(n))(O(m * n))(O(1))(O(m * n))
优势直观,易理解空间效率高避免重复计算,减少计算次数不需要额外空间,原地修改可以更快地找到最小路径和
劣势空间占用高仅限于列优化需要辅助空间存储递归状态修改输入数据计算和空间复杂度较高

应用示例

机器人导航系统
在自动化仓库或智能制造系统中,机器人需要找到成本最低的路径来移动货物或执行任务。动态规划方法可以有效地计算出从起点到终点的最低成本路径,提高系统的效率和响应速度。此外,实时路径规划系统可以利用优先队列优化的BFS来快速调整路径,以应对动态变化的环境条件,如临时障碍或优先级任务。

这篇关于穿越障碍:最小路径和的高效算法比较【python力扣题64】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934695

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo