穿越障碍:最小路径和的高效算法比较【python力扣题64】

2024-04-25 12:36

本文主要是介绍穿越障碍:最小路径和的高效算法比较【python力扣题64】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个包含非负整数的 m x n 网格 grid,现在你需要找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

:每次只能向下或者向右移动一步。

输入格式
  • grid:二维数组,其中的元素表示网格中的点的值。
输出格式
  • 返回一个整数,表示所有可能路径中的最小和。

示例

示例 1
输入: grid = [[1,3,1],[1,5,1],[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
示例 2
输入: grid = [[1,2,3],[4,5,6]
]
输出: 12

方法一:动态规划

解题步骤
  1. 定义状态:创建一个同样大小的二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的最小路径和。
  2. 初始化状态:第一行和第一列的元素只能由它的左边或上边来,所以是累加当前行或列的值。
  3. 状态转移:对于其他位置,dp[i][j] 由它的左边和上边的较小值加上当前网格值得到,即 dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
  4. 返回结果dp[m-1][n-1] 即为最小路径和。
完整的规范代码
def minPathSum(grid):"""使用动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [[0]*n for _ in range(m)]dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]return dp[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:只用一个长度为 n 的数组来保存当前行的 dp 值。
  2. 迭代更新:每次更新时,dp[j] 更新为 dp[j](从上一行继承下来的,即上方)和 dp[j-1](当前行左边的,即左方)中的较小值加上当前点的值。
完整的规范代码
def minPathSum(grid):"""使用一维数组进行动态规划,空间优化版本:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [0] * ndp[0] = grid[0][0]for j in range(1, n):dp[j] = dp[j-1] + grid[0][j]for i in range(1, m):dp[0] += grid[i][0]for j in range(1, n):dp[j] = min(dp[j-1], dp[j]) + grid[i][j]return dp[n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(n)),使用了一个长度为列数 n 的数组。

方法三:递归 + 记忆化

解题步骤
  1. 递归定义:定义一个递归函数,用于计算到达 (i, j) 的最小路径和。
  2. 记忆化存储:使用一个字典或数组来存储已经计算过的结果,避免重复计算。
完整的规范代码
def minPathSum(grid):"""使用递归和记忆化搜索解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""from functools import lru_cachem, n = len(grid), len(grid[0])@lru_cache(None)def dfs(i, j):if i == 0 and j == 0:return grid[i][j]if i < 0 or j < 0:return float('inf')return grid[i][j] + min(dfs(i-1, j), dfs(i, j-1))return dfs(m-1, n-1)# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),每个点最多计算一次,利用记忆化避免重复计算。
  • 空间复杂度:(O(m * n)),记忆化需要的空间。

方法四:从终点到起点的动态规划

解题步骤
  1. 反向动态规划:从网格的右下角开始,向左上角逐步计算。
  2. 更新规则:每个点的最小路径和取决于其右边和下边的点的最小路径和。
完整的规范代码
def minPathSum(grid):"""使用反向动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])for i in range(m-2, -1, -1):grid[i][n-1] += grid[i+1][n-1]for j in range(n-2, -1, -1):grid[m-1][j] += grid[m-1][j+1]for i in range(m-2, -1, -1):for j in range(n-2, -1, -1):grid[i][j] += min(grid[i+1][j], grid[i][j+1])return grid[0][0]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(1)),直接在输入网格上进行修改,不需要额外空间。

方法五:改进的BFS

解题步骤
  1. 队列实现BFS:使用队列来实现广度优先搜索,每次处理一层。
  2. 累计最小和:使用额外的二维数组来保存到每个点的最小路径和。
  3. 优先队列优化:使用优先队列(小顶堆)来优先处理当前路径和最小的节点,以快速找到最小路径和。
完整的规范代码
from heapq import heappush, heappopdef minPathSum(grid):"""使用改进的BFS和优先队列解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])minHeap = [(grid[0][0], 0, 0)]  # (cost, x, y)costs = [[float('inf')] * n for _ in range(m)]costs[0][0] = grid[0][0]while minHeap:cost, x, y = heappop(minHeap)for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:new_cost = cost + grid[nx][ny]if new_cost < costs[nx][ny]:costs[nx][ny] = new_costheappush(minHeap, (new_cost, nx, ny))return costs[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n \log(m * n))),每个节点可能多次进入堆。
  • 空间复杂度:(O(m * n)),用于存储路径成本和堆结构。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 递归+记忆化方法四: 反向DP方法五: BFS+优先队列
时间复杂度(O(m * n))(O(m * n))(O(m * n))(O(m * n))(O(m * n \log(m * n)))
空间复杂度(O(m * n))(O(n))(O(m * n))(O(1))(O(m * n))
优势直观,易理解空间效率高避免重复计算,减少计算次数不需要额外空间,原地修改可以更快地找到最小路径和
劣势空间占用高仅限于列优化需要辅助空间存储递归状态修改输入数据计算和空间复杂度较高

应用示例

机器人导航系统
在自动化仓库或智能制造系统中,机器人需要找到成本最低的路径来移动货物或执行任务。动态规划方法可以有效地计算出从起点到终点的最低成本路径,提高系统的效率和响应速度。此外,实时路径规划系统可以利用优先队列优化的BFS来快速调整路径,以应对动态变化的环境条件,如临时障碍或优先级任务。

这篇关于穿越障碍:最小路径和的高效算法比较【python力扣题64】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934695

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统