穿越障碍:最小路径和的高效算法比较【python力扣题64】

2024-04-25 12:36

本文主要是介绍穿越障碍:最小路径和的高效算法比较【python力扣题64】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个包含非负整数的 m x n 网格 grid,现在你需要找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

:每次只能向下或者向右移动一步。

输入格式
  • grid:二维数组,其中的元素表示网格中的点的值。
输出格式
  • 返回一个整数,表示所有可能路径中的最小和。

示例

示例 1
输入: grid = [[1,3,1],[1,5,1],[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
示例 2
输入: grid = [[1,2,3],[4,5,6]
]
输出: 12

方法一:动态规划

解题步骤
  1. 定义状态:创建一个同样大小的二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的最小路径和。
  2. 初始化状态:第一行和第一列的元素只能由它的左边或上边来,所以是累加当前行或列的值。
  3. 状态转移:对于其他位置,dp[i][j] 由它的左边和上边的较小值加上当前网格值得到,即 dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
  4. 返回结果dp[m-1][n-1] 即为最小路径和。
完整的规范代码
def minPathSum(grid):"""使用动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [[0]*n for _ in range(m)]dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]return dp[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:只用一个长度为 n 的数组来保存当前行的 dp 值。
  2. 迭代更新:每次更新时,dp[j] 更新为 dp[j](从上一行继承下来的,即上方)和 dp[j-1](当前行左边的,即左方)中的较小值加上当前点的值。
完整的规范代码
def minPathSum(grid):"""使用一维数组进行动态规划,空间优化版本:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [0] * ndp[0] = grid[0][0]for j in range(1, n):dp[j] = dp[j-1] + grid[0][j]for i in range(1, m):dp[0] += grid[i][0]for j in range(1, n):dp[j] = min(dp[j-1], dp[j]) + grid[i][j]return dp[n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(n)),使用了一个长度为列数 n 的数组。

方法三:递归 + 记忆化

解题步骤
  1. 递归定义:定义一个递归函数,用于计算到达 (i, j) 的最小路径和。
  2. 记忆化存储:使用一个字典或数组来存储已经计算过的结果,避免重复计算。
完整的规范代码
def minPathSum(grid):"""使用递归和记忆化搜索解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""from functools import lru_cachem, n = len(grid), len(grid[0])@lru_cache(None)def dfs(i, j):if i == 0 and j == 0:return grid[i][j]if i < 0 or j < 0:return float('inf')return grid[i][j] + min(dfs(i-1, j), dfs(i, j-1))return dfs(m-1, n-1)# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),每个点最多计算一次,利用记忆化避免重复计算。
  • 空间复杂度:(O(m * n)),记忆化需要的空间。

方法四:从终点到起点的动态规划

解题步骤
  1. 反向动态规划:从网格的右下角开始,向左上角逐步计算。
  2. 更新规则:每个点的最小路径和取决于其右边和下边的点的最小路径和。
完整的规范代码
def minPathSum(grid):"""使用反向动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])for i in range(m-2, -1, -1):grid[i][n-1] += grid[i+1][n-1]for j in range(n-2, -1, -1):grid[m-1][j] += grid[m-1][j+1]for i in range(m-2, -1, -1):for j in range(n-2, -1, -1):grid[i][j] += min(grid[i+1][j], grid[i][j+1])return grid[0][0]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(1)),直接在输入网格上进行修改,不需要额外空间。

方法五:改进的BFS

解题步骤
  1. 队列实现BFS:使用队列来实现广度优先搜索,每次处理一层。
  2. 累计最小和:使用额外的二维数组来保存到每个点的最小路径和。
  3. 优先队列优化:使用优先队列(小顶堆)来优先处理当前路径和最小的节点,以快速找到最小路径和。
完整的规范代码
from heapq import heappush, heappopdef minPathSum(grid):"""使用改进的BFS和优先队列解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])minHeap = [(grid[0][0], 0, 0)]  # (cost, x, y)costs = [[float('inf')] * n for _ in range(m)]costs[0][0] = grid[0][0]while minHeap:cost, x, y = heappop(minHeap)for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:new_cost = cost + grid[nx][ny]if new_cost < costs[nx][ny]:costs[nx][ny] = new_costheappush(minHeap, (new_cost, nx, ny))return costs[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n \log(m * n))),每个节点可能多次进入堆。
  • 空间复杂度:(O(m * n)),用于存储路径成本和堆结构。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 递归+记忆化方法四: 反向DP方法五: BFS+优先队列
时间复杂度(O(m * n))(O(m * n))(O(m * n))(O(m * n))(O(m * n \log(m * n)))
空间复杂度(O(m * n))(O(n))(O(m * n))(O(1))(O(m * n))
优势直观,易理解空间效率高避免重复计算,减少计算次数不需要额外空间,原地修改可以更快地找到最小路径和
劣势空间占用高仅限于列优化需要辅助空间存储递归状态修改输入数据计算和空间复杂度较高

应用示例

机器人导航系统
在自动化仓库或智能制造系统中,机器人需要找到成本最低的路径来移动货物或执行任务。动态规划方法可以有效地计算出从起点到终点的最低成本路径,提高系统的效率和响应速度。此外,实时路径规划系统可以利用优先队列优化的BFS来快速调整路径,以应对动态变化的环境条件,如临时障碍或优先级任务。

这篇关于穿越障碍:最小路径和的高效算法比较【python力扣题64】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934695

相关文章

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑