PyTorch中使用预训练的模型初始化网络的一部分参数(增减网络层,修改某层参数等) 固定参数

本文主要是介绍PyTorch中使用预训练的模型初始化网络的一部分参数(增减网络层,修改某层参数等) 固定参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在预训练网络的基础上,修改部分层得到自己的网络,通常我们需要解决的问题包括: 
1. 从预训练的模型加载参数 
2. 对新网络两部分设置不同的学习率,主要训练自己添加的层 

一. 加载参数的方法: 
加载参数可以参考apaszke推荐的做法,即删除与当前model不匹配的key。代码片段为:

model = ...
model_dict = model.state_dict()# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)


二. 不同层设置不同学习率的方法 
此部分主要参考PyTorch教程的Autograd machnics部分 
2.1 在PyTorch中,每个Variable数据含有两个flag(requires_grad和volatile)用于指示是否计算此Variable的梯度。设置requires_grad = False,或者设置volatile=True,即可指示不计算此Variable的梯度:

for param in model.parameters():param.requires_grad = False


注意,在模型测试时,对input_data设置volatile=True,可以节省测试时的显存 
2.2 PyTorch的Module.modules()和Module.children() 
参考PyTorch document和discuss 
在PyTorch中,所有的neural network module都是class torch.nn.Module的子类,在Modules中可以包含其它的Modules,以一种树状结构进行嵌套。当需要返回神经网络中的各个模块时,Module.modules()方法返回网络中所有模块的一个iterator,而Module.children()方法返回所有直接子模块的一个iterator。具体而言:

list(nn.Sequential(nn.Linear(10, 20), nn.ReLU()).modules())
Out[9]:
[Sequential ((0): Linear (10 -> 20)(1): ReLU ()), Linear (10 -> 20), ReLU ()]In [10]: list(nn.Sequential(nn.Linear(10, 20), nn.ReLU()).children())
Out[10]: [Linear (10 -> 20), ReLU ()]


2.3 选择特定的层进行finetune 
先使用Module.children()方法查看网络的直接子模块,将不需要调整的模块中的参数设置为param.requires_grad = False,同时用一个list收集需要调整的模块中的参数。具体代码为:

count = 0para_optim = []for k in model.children():count += 1# 6 should be changed properlyif count > 6:for param in k.parameters():para_optim.append(param)else:for param in k.parameters():param.requires_grad = False
optimizer = optim.RMSprop(para_optim, lr)



到此我们实现了PyTorch中使用预训练的模型初始化网络的一部分参数,参考代码见我的GitHub:
--------------------- 
作者:乐兮山南水北 
来源:CSDN 
原文:https://blog.csdn.net/u012494820/article/details/79068625 
版权声明:本文为博主原创文章,转载请附上博文链接!

有的时候我们需要对预训练的模型增减一些网络层或着修改某些层的参数等

一、pytorch中的pre-train模型
卷积神经网络的训练是耗时的,很多场合不可能每次都从随机初始化参数开始训练网络。
pytorch中自带几种常用的深度学习网络预训练模型,如VGG、ResNet等。往往为了加快学习的进度,在训练的初期我们直接加载pre-train模型中预先训练好的参数,model的加载如下所示:

import torchvision.models as models#resnet
model = models.ResNet(pretrained=True)
model = models.resnet18(pretrained=True)
model = models.resnet34(pretrained=True)
model = models.resnet50(pretrained=True)#vgg
model = models.VGG(pretrained=True)
model = models.vgg11(pretrained=True)
model = models.vgg16(pretrained=True)
model = models.vgg16_bn(pretrained=True)


二、预训练模型的修改
1.参数修改
对于简单的参数修改,这里以resnet预训练模型举例,resnet源代码在Github点击打开链接。
resnet网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,如果只有9类,修改的代码如下:

# coding=UTF-8
import torchvision.models as models#调用模型
model = models.resnet50(pretrained=True)
#提取fc层中固定的参数
fc_features = model.fc.in_features
#修改类别为9
model.fc = nn.Linear(fc_features, 9)

2.增减卷积层
前一种方法只适用于简单的参数修改,有的时候我们往往要修改网络中的层次结构,这时只能用参数覆盖的方法,即自己先定义一个类似的网络,再将预训练中的参数提取到自己的网络中来。这里以resnet预训练模型举例。

# coding=UTF-8
import torchvision.models as models
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zooclass CNN(nn.Module):def __init__(self, block, layers, num_classes=9):self.inplanes = 64super(ResNet, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, layers[0])self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer4 = self._make_layer(block, 512, layers[3], stride=2)self.avgpool = nn.AvgPool2d(7, stride=1)#新增一个反卷积层self.convtranspose1 = nn.ConvTranspose2d(2048, 2048, kernel_size=3, stride=1, padding=1, output_padding=0, groups=1, bias=False, dilation=1)#新增一个最大池化层self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)#去掉原来的fc层,新增一个fclass层self.fclass = nn.Linear(2048, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):n = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsm.weight.data.normal_(0, math.sqrt(2. / n))elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def _make_layer(self, block, planes, blocks, stride=1):downsample = Noneif stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample))self.inplanes = planes * block.expansionfor i in range(1, blocks):layers.append(block(self.inplanes, planes))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)#新加层的forwardx = x.view(x.size(0), -1)x = self.convtranspose1(x)x = self.maxpool2(x)x = x.view(x.size(0), -1)x = self.fclass(x)return x#加载model
resnet50 = models.resnet50(pretrained=True)
cnn = CNN(Bottleneck, [3, 4, 6, 3])
#读取参数
pretrained_dict = resnet50.state_dict()
model_dict = cnn.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict =  {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
cnn.load_state_dict(model_dict)
# print(resnet50)
print(cnn)


--------------------- 
作者:whut_ldz 
来源:CSDN 
原文:https://blog.csdn.net/whut_ldz/article/details/78845947 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于PyTorch中使用预训练的模型初始化网络的一部分参数(增减网络层,修改某层参数等) 固定参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933612

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali