算法学习笔记Day9——动态规划初探

2024-04-25 03:04

本文主要是介绍算法学习笔记Day9——动态规划初探,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?

1. 动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

2. 动态规划的核心思想就是穷举求最值,但只有列出正确的「状态转移方程」,才能正确地穷举。你需要判断算法问题是否具备「最优子结构」,是否能够通过子问题的最值得到原问题的最值。另外,动态规划问题存在「重叠子问题」,如果暴力穷举的话效率会很低,所以需要你使用「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。

以上提到的重叠子问题、最优子结构、状态转移方程就是动态规划三要素。

3. 思维框架:明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义

递归是自顶向下,动态规划是自底向上

4. 带备忘录的递归和动态规划实际上是等价的,动态规划是从底层开始,一步一步完成对数组的完善,所以不需要备忘录,或者说dp数组本身就是备忘录,递归会遇到很多重复的子问题,所以需要备忘录来简化。

二、例题

例题1:斐波那契数

分析

写出状态转移方程,写出基底,就可以开始自底向上构造了。

代码

思路1:自底向上解法

class Solution {
public:int fib(int n) {if(n == 0 || n == 1){return n;}int fib_1 = 1, fib_2 = 0;int fib_i;for(int i = 2; i<= n; i++){fib_i = fib_1 + fib_2;fib_2 = fib_1;fib_1 = fib_i;}return fib_i;}
};

思路2:自顶向下解法

class Solution {
public:vector<int> diary;int recursion(int n){//基地if(n == 0 || n == 1){return n;}//查日记if(diary[n] != -1){return diary[n];}//日记没查到,更新日记,用递归更新它diary[n] = recursion(n-1) + recursion(n-2);//再查找日记本return diary[n];}int fib(int n) {diary.resize(n+1, -1);return recursion(n);}
};

例题2:零钱兑换

分析

写出状态方程就可以了

代码

思路1:带备忘录的递归

class Solution {
public:vector<int> diary;int dp(vector<int>& coins, int amount){if(amount < 0){return -1;}if(amount == 0){return 0;}if(diary[amount] != 0){return diary[amount];}int ans = INT_MAX;for(int coin : coins){int subsolution = dp(coins, amount - coin);if(subsolution != -1){ans = min(subsolution+1, ans);}}diary[amount] = ans==INT_MAX ? -1:ans;return diary[amount];}int coinChange(vector<int>& coins, int amount) {diary.resize(amount+1, 0);return dp(coins, amount);}
};

不知道为什么把diary初始化为-1就会超时,推测是-1表示不可能的情况,有很多正数diary也是-1,就容易进入循环,但是0只有0这个情况。

思路2:dp迭代

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX-1);//base situationdp[0] = 0;for(int i  =0; i<=amount; i++){for(int coin : coins){if(i - coin < 0){continue;}dp[i] = min(dp[i], dp[i-coin] + 1);}}return dp[amount]==INT_MAX-1?-1:dp[amount];}
};

例题3:最长递增子序列

分析

首先要明确dp数组代表什么,这里是以 位置i数字 结尾的最长字序列长度,对于每个位置,比较前面的位置,只要它大于某个元素,就可以和那个元素的最长子序列组成新的最长子序列。

代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);for(int i  = 0; i< nums.size(); i++){for(int j = 0; j<i; j++){if(nums[i] > nums[j])dp[i] = max(dp[i], dp[j] + 1);}}return *max_element(dp.begin(), dp.end());}
};

例题4:俄罗斯套娃信封问题 

代码

class Solution {
public:int maxEnvelopes(vector<vector<int>>& envelopes) {int n = envelopes.size();sort(envelopes.begin(), envelopes.end(), [](vector<int>& a, vector<int>& b)->bool{return a[0] == b[0]? a[1] > b[1] : a[0] < b[0];});vector<int> dp(n, 1);for(int i = 0; i<n; i++){for(int j = 0; j< i; j++){if(envelopes[i][1] > envelopes[j][1]){dp[i] = max(dp[i], dp[j] + 1);}}}return *max_element(dp.begin(), dp.end());}
};

 

三、总结

i)斐波那契数列的问题,解释了如何通过「备忘录」或者「dp table」的方法来优化递归树,并且明确了这两种方法本质上是一样的,只是自顶向下和自底向上的不同而已。

ii)凑零钱的问题,展示了如何流程化确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的也就是优化递归树,消除重叠子问题而已。

iii)二维数组也可以排序,要传入一个lamda表达式来说明排序的方式,第四题套娃问题,同样长的信封必须按宽的逆序排列,因为同样大小是不可以嵌套的,如果顺序排列,求最长递增子序列的时候就会多一个。

这篇关于算法学习笔记Day9——动态规划初探的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933546

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.