第十四章大数据和数据科学4分

2024-04-24 21:04
文章标签 数据 科学 第十四章

本文主要是介绍第十四章大数据和数据科学4分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

14.1 引言

14.1.3 科学理念

1.数据科学

数据科学将数据挖掘、统计分析和机器学习与数据集成整合,结合数据建模能力,去构建预测模型、探索数据内容模式。
数据科学依赖于:
1)丰富的数据源。具有能够展示隐藏在组织或客户行为中不可见模式的潜力。
2)信息组织和分析。用来领会数据内容,结合数据集针对有意义模式进行假设和测试的技术。
3)信息交付。针对数据运行模型和数学算法,进行可视化展示及其他方式输出,以此加强对行为的深入洞察。
4)展示发现和数据洞察。分析和揭示结果,分享洞察观点(表 14-1)对比了传统的数据仓库/商务智能与基于数据科学技术实现的预测性分析和规范性分析的作用。
在这里插入图片描述

2.数据科学的过程

在数据科学的过程中 获得和接收数据源工作量最大

3.大数据

早 期 ,人 们 通 过 3V 来 定 义 大 数 据 含 义 的 特 征 :数 据 量 大(Volume)、数据更新快(Velocity)、数据类型多样/可变(Variety)(Laney,2001)。随着越来越多的组织开始深挖大数据的潜力,已经不止于以上三个 V。V 列表有了更多的扩展:
1)数据量大(Volume)。大数据通常拥有上千个实体或数十亿个记录中的元素。
2)数据更新快(Velocity)。指数据被捕获、生成或共享的速度。大数据通常实时地生成、分发及进行分析。
3)数据类型多样/可变(Variety/Variability)。指抓取或传递数据的形式。大数据需要多种格式储存。通常,数据集内或跨数据集的数据结构是不一致的。
4)数据黏度大(Viscosity)。指数据使用或集成的难度比较高。
5)数据波动性大(Volatility)。指数据更改的频率,以及由此导致的数据有效时间短。

5.大数据来源

结构化数据+非结构化数据

6.数据湖

数据湖是一种可以 提取、存储、评估和分析不同类型和结构海量数据的环境,可供多种场景使用。如可以提供:
1)数据科学家可以挖掘和分析数据的环境。
2)原始数据的集中存储区域,只需很少量的转换(如果需要的话)。
3)数据仓库明细历史数据的备用存储区域。
4)信息记录的在线归档。
5)可以通过自动化的模型识别提取流数据的环境。

数据湖的风险在于,它可能很快会变成 数据沼泽 ——杂乱、不干净、不一致。为了建立数据湖中的内容清单,在数据被摄取时对元数据进行管理至关重要。

Q:数据湖管理不好会变成?
A 池塘 B 沼泽 C 大海A:不是池塘,是沼泽。
Q:数据湖是否管理好表示什么?
A 元数据是否管理好?B 数据质量得到保证A:元数据是否管理好

7.基于服务的架构基于服务的体系结构(Services-Based Architecture,SBA)

8.机器学习

机器学习探索了学习算法的构建和研究。这些算法一般分为三种类型:
1)监督学习(Supervised learning)。基于通用规则(如将 SPAM 邮件与非 SPAM 邮件分开)。
2)无监督学习(Unsupervised learning)。基于找到的那些隐藏的规律(数据挖掘)。
3)强化学习(Reinforcement learning)。基于目标的实现(如在国际象棋中击败对手)。

Q:预测明天销售额是多少?A:有无限可能性,
无监督学习
Q:预测明年销售额是否笔今年多?A 多 B 少 C 一样 D 不知道
监督学习

12.规范分析

规范分析(Prescriptive Analytics)比预测分析更进一步,它对将会影响结果的动作进行定义,而不仅仅是根据已发生的动作预测结果。 规范分析预计将会发生什么,何时会发生,并暗示它将会发生的原因。由于规范分析可以显示各种决策的含义,因此可以建议如何利用机会或避免风险。规范分析可以不断接收新数据以重新预测和重新规定。该过程可以提高预测准确性,并提供更好的方案。

这篇关于第十四章大数据和数据科学4分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/932835

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数