第十四章大数据和数据科学4分

2024-04-24 21:04
文章标签 数据 科学 第十四章

本文主要是介绍第十四章大数据和数据科学4分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

14.1 引言

14.1.3 科学理念

1.数据科学

数据科学将数据挖掘、统计分析和机器学习与数据集成整合,结合数据建模能力,去构建预测模型、探索数据内容模式。
数据科学依赖于:
1)丰富的数据源。具有能够展示隐藏在组织或客户行为中不可见模式的潜力。
2)信息组织和分析。用来领会数据内容,结合数据集针对有意义模式进行假设和测试的技术。
3)信息交付。针对数据运行模型和数学算法,进行可视化展示及其他方式输出,以此加强对行为的深入洞察。
4)展示发现和数据洞察。分析和揭示结果,分享洞察观点(表 14-1)对比了传统的数据仓库/商务智能与基于数据科学技术实现的预测性分析和规范性分析的作用。
在这里插入图片描述

2.数据科学的过程

在数据科学的过程中 获得和接收数据源工作量最大

3.大数据

早 期 ,人 们 通 过 3V 来 定 义 大 数 据 含 义 的 特 征 :数 据 量 大(Volume)、数据更新快(Velocity)、数据类型多样/可变(Variety)(Laney,2001)。随着越来越多的组织开始深挖大数据的潜力,已经不止于以上三个 V。V 列表有了更多的扩展:
1)数据量大(Volume)。大数据通常拥有上千个实体或数十亿个记录中的元素。
2)数据更新快(Velocity)。指数据被捕获、生成或共享的速度。大数据通常实时地生成、分发及进行分析。
3)数据类型多样/可变(Variety/Variability)。指抓取或传递数据的形式。大数据需要多种格式储存。通常,数据集内或跨数据集的数据结构是不一致的。
4)数据黏度大(Viscosity)。指数据使用或集成的难度比较高。
5)数据波动性大(Volatility)。指数据更改的频率,以及由此导致的数据有效时间短。

5.大数据来源

结构化数据+非结构化数据

6.数据湖

数据湖是一种可以 提取、存储、评估和分析不同类型和结构海量数据的环境,可供多种场景使用。如可以提供:
1)数据科学家可以挖掘和分析数据的环境。
2)原始数据的集中存储区域,只需很少量的转换(如果需要的话)。
3)数据仓库明细历史数据的备用存储区域。
4)信息记录的在线归档。
5)可以通过自动化的模型识别提取流数据的环境。

数据湖的风险在于,它可能很快会变成 数据沼泽 ——杂乱、不干净、不一致。为了建立数据湖中的内容清单,在数据被摄取时对元数据进行管理至关重要。

Q:数据湖管理不好会变成?
A 池塘 B 沼泽 C 大海A:不是池塘,是沼泽。
Q:数据湖是否管理好表示什么?
A 元数据是否管理好?B 数据质量得到保证A:元数据是否管理好

7.基于服务的架构基于服务的体系结构(Services-Based Architecture,SBA)

8.机器学习

机器学习探索了学习算法的构建和研究。这些算法一般分为三种类型:
1)监督学习(Supervised learning)。基于通用规则(如将 SPAM 邮件与非 SPAM 邮件分开)。
2)无监督学习(Unsupervised learning)。基于找到的那些隐藏的规律(数据挖掘)。
3)强化学习(Reinforcement learning)。基于目标的实现(如在国际象棋中击败对手)。

Q:预测明天销售额是多少?A:有无限可能性,
无监督学习
Q:预测明年销售额是否笔今年多?ABC 一样 D 不知道
监督学习

12.规范分析

规范分析(Prescriptive Analytics)比预测分析更进一步,它对将会影响结果的动作进行定义,而不仅仅是根据已发生的动作预测结果。 规范分析预计将会发生什么,何时会发生,并暗示它将会发生的原因。由于规范分析可以显示各种决策的含义,因此可以建议如何利用机会或避免风险。规范分析可以不断接收新数据以重新预测和重新规定。该过程可以提高预测准确性,并提供更好的方案。

这篇关于第十四章大数据和数据科学4分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932835

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类