Python检验样本是否服从正态分布

2024-04-24 20:38

本文主要是介绍Python检验样本是否服从正态分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在进行t检验、F检验之前,我们往往要求样本大致服从正态分布,下面介绍两种检验样本是否服从正态分布的方法。

1 可视化

我们可以通过将样本可视化,看一下样本的概率密度是否是正态分布来初步判断样本是否服从正态分布。

代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 使用pandas和numpy生成一组仿真数据
s = pd.DataFrame(np.random.randn(500),columns=['value'])
print(s.shape)      # (500, 1)# 创建自定义图像
fig = plt.figure(figsize=(10, 6))
# 创建子图1
ax1 = fig.add_subplot(2,1,1)
# 绘制散点图
ax1.scatter(s.index, s.values)
plt.grid()      # 添加网格# 创建子图2
ax2 = fig.add_subplot(2, 1, 2)
# 绘制直方图
s.hist(bins=30,alpha=0.5,ax=ax2)
# 绘制密度图
s.plot(kind='kde', secondary_y=True,ax=ax2)     # 使用双坐标轴
plt.grid()      # 添加网格# 显示自定义图像
plt.show()

 可视化图像如下:

从图中可以初步看出生成的数据近似服从正态分布。为了得到更具说服力的结果,我们可以使用统计检验的方法,这里使用的是.scipy.stats中的函数。

2 统计检验

1)kstest

scipy.stats.kstest函数可用于检验样本是否服从正态、指数、伽马等分布,函数的源代码为:

def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'):"""Perform the Kolmogorov-Smirnov test for goodness of fit.This performs a test of the distribution F(x) of an observedrandom variable against a given distribution G(x). Under the nullhypothesis the two distributions are identical, F(x)=G(x). Thealternative hypothesis can be either 'two-sided' (default), 'less'or 'greater'. The KS test is only valid for continuous distributions.Parameters----------rvs : str, array or callableIf a string, it should be the name of a distribution in `scipy.stats`.If an array, it should be a 1-D array of observations of randomvariables.If a callable, it should be a function to generate random variables;it is required to have a keyword argument `size`.cdf : str or callableIf a string, it should be the name of a distribution in `scipy.stats`.If `rvs` is a string then `cdf` can be False or the same as `rvs`.If a callable, that callable is used to calculate the cdf.args : tuple, sequence, optionalDistribution parameters, used if `rvs` or `cdf` are strings.N : int, optionalSample size if `rvs` is string or callable.  Default is 20.alternative : {'two-sided', 'less','greater'}, optionalDefines the alternative hypothesis (see explanation above).Default is 'two-sided'.mode : 'approx' (default) or 'asymp', optionalDefines the distribution used for calculating the p-value.- 'approx' : use approximation to exact distribution of test statistic- 'asymp' : use asymptotic distribution of test statisticReturns-------statistic : floatKS test statistic, either D, D+ or D-.pvalue :  floatOne-tailed or two-tailed p-value.

2)normaltest

scipy.stats.normaltest函数专门用于检验样本是否服从正态分布,函数的源代码为:

def normaltest(a, axis=0, nan_policy='propagate'):"""Test whether a sample differs from a normal distribution.This function tests the null hypothesis that a sample comesfrom a normal distribution.  It is based on D'Agostino andPearson's [1]_, [2]_ test that combines skew and kurtosis toproduce an omnibus test of normality.Parameters----------a : array_likeThe array containing the sample to be tested.axis : int or None, optionalAxis along which to compute test. Default is 0. If None,compute over the whole array `a`.nan_policy : {'propagate', 'raise', 'omit'}, optionalDefines how to handle when input contains nan. 'propagate' returns nan,'raise' throws an error, 'omit' performs the calculations ignoring nanvalues. Default is 'propagate'.Returns-------statistic : float or array``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and``k`` is the z-score returned by `kurtosistest`.pvalue : float or arrayA 2-sided chi squared probability for the hypothesis test.

3)shapiro

scipy.stats.shapiro函数也是用于专门做正态检验的,函数的源代码为:

def shapiro(x):"""Perform the Shapiro-Wilk test for normality.The Shapiro-Wilk test tests the null hypothesis that thedata was drawn from a normal distribution.Parameters----------x : array_likeArray of sample data.Returns-------W : floatThe test statistic.p-value : floatThe p-value for the hypothesis test.

下面我们使用第一部分生成的仿真数据,用这三种统计检验函数检验生成的样本是否服从正态分布(p > 0.05),代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 使用pandas和numpy生成一组仿真数据
s = pd.DataFrame(np.random.randn(500),columns=['value'])
print(s.shape)      # (500, 1)# 计算均值
u = s['value'].mean()
# 计算标准差
std = s['value'].std()  # 计算标准差
print('scipy.stats.kstest统计检验结果:----------------------------------------------------')
print(stats.kstest(s['value'], 'norm', (u, std)))
print('scipy.stats.normaltest统计检验结果:----------------------------------------------------')
print(stats.normaltest(s['value']))
print('scipy.stats.shapiro统计检验结果:----------------------------------------------------')
print(stats.shapiro(s['value']))

统计检验结果如下:

scipy.stats.kstest统计检验结果:----------------------------------------------------
KstestResult(statistic=0.01596290473494305, pvalue=0.9995623150120069)
scipy.stats.normaltest统计检验结果:----------------------------------------------------
NormaltestResult(statistic=0.5561685865675511, pvalue=0.7572329891688141)
scipy.stats.shapiro统计检验结果:----------------------------------------------------
(0.9985257983207703, 0.9540967345237732)

可以看到使用三种方法检验样本是否服从正态分布的结果中p-value都大于0.05,说明服从原假设,即生成的仿真数据服从正态分布。

参考

python数据分析----卡方检验,T检验,F检验,K-S检验

python使用scipy.stats数据(正态)分布检验方法

python 如何判断一组数据是否符合正态分布

这篇关于Python检验样本是否服从正态分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932792

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e