kubernetes中的附件组件Metrics-server与hpa资源实现对pod的自动扩容和缩容

本文主要是介绍kubernetes中的附件组件Metrics-server与hpa资源实现对pod的自动扩容和缩容,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述

        Metrics-Server组件目的:获取集群中pod、节点等负载信息;

        hpa资源目的:通过metrics-server获取的pod负载信息,自动伸缩创建pod;

二、安装部署 Metrics-Server组件

安装目的,就是给k8s集群安装top命令

1、下载Metrics-Server资源清单

wget  https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability-1.21+.yaml

下载好的 high-availability-1.21+.yaml文件

apiVersion: v1
kind: ServiceAccount
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-serverrbac.authorization.k8s.io/aggregate-to-admin: "true"rbac.authorization.k8s.io/aggregate-to-edit: "true"rbac.authorization.k8s.io/aggregate-to-view: "true"name: system:aggregated-metrics-reader
rules:
- apiGroups:- metrics.k8s.ioresources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-servername: system:metrics-server
rules:
- apiGroups:- ""resources:- nodes/metricsverbs:- get
- apiGroups:- ""resources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server-auth-readernamespace: kube-system
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server:system:auth-delegator
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:auth-delegator
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: system:metrics-server
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:metrics-server
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: v1
kind: Service
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:ports:- name: httpsport: 443protocol: TCPtargetPort: httpsselector:k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:replicas: 2selector:matchLabels:k8s-app: metrics-serverstrategy:rollingUpdate:maxUnavailable: 1template:metadata:labels:k8s-app: metrics-serverspec:affinity:podAntiAffinity:requiredDuringSchedulingIgnoredDuringExecution:- labelSelector:matchLabels:k8s-app: metrics-servernamespaces:- kube-systemtopologyKey: kubernetes.io/hostnamecontainers:- args:- --cert-dir=/tmp- --secure-port=10250- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname- --kubelet-use-node-status-port- --metric-resolution=15simage: registry.k8s.io/metrics-server/metrics-server:v0.7.1imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livezport: httpsscheme: HTTPSperiodSeconds: 10name: metrics-serverports:- containerPort: 10250name: httpsprotocol: TCPreadinessProbe:failureThreshold: 3httpGet:path: /readyzport: httpsscheme: HTTPSinitialDelaySeconds: 20periodSeconds: 10resources:requests:cpu: 100mmemory: 200MisecurityContext:allowPrivilegeEscalation: falsecapabilities:drop:- ALLreadOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 1000seccompProfile:type: RuntimeDefaultvolumeMounts:- mountPath: /tmpname: tmp-dirnodeSelector:kubernetes.io/os: linuxpriorityClassName: system-cluster-criticalserviceAccountName: metrics-servervolumes:- emptyDir: {}name: tmp-dir
---
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:minAvailable: 1selector:matchLabels:k8s-app: metrics-server
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:labels:k8s-app: metrics-servername: v1beta1.metrics.k8s.io
spec:group: metrics.k8s.iogroupPriorityMinimum: 100insecureSkipTLSVerify: trueservice:name: metrics-servernamespace: kube-systemversion: v1beta1versionPriority: 100

2、编辑Metrics-Server的资源清单

....     topologyKey: kubernetes.io/hostnamecontainers:- args:#启动允许使用不安全的证书- --kubelet-insecure-tls- --cert-dir=/tmp- --secure-port=10250- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname- --kubelet-use-node-status-port- --metric-resolution=15s#image: registry.k8s.io/metrics-server/metrics-server:v0.7.1image: registry.aliyuncs.com/google_containers/metrics-server:v0.6.3imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livez

....

 3、创建Metrics-Server资源

[root@master study-demo]# kubectl apply -f high-availability-1.21+.yaml 
serviceaccount/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
service/metrics-server created
deployment.apps/metrics-server created
poddisruptionbudget.policy/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created
 

4、查看安装结果 

4.1 查看pod

[root@master study-demo]# kubectl get pod --show-labels -A  | grep metrics

4.2 kubectl top node 命令查看节点信息

 

4.3 kubectl top pods -A 命令查看pod信息

三、hpa资源实现pod水平伸缩(自动扩缩容)

  1. 当资源使用超过一定的范围,会自动扩容,但是扩容数量不会超过最大pod数量
  2. 扩容时无延迟,只要监控资源超过阈值,则会自动创建pod
  3. 当资源使用率恢复到阈值以下时,需要等待一段时间才会释放,大概5分钟

3.1 编写deployment资源清单

[root@master hpa-demo]# cat deployment.yaml 

apiVersion: apps/v1
kind: Deployment
metadata:
  name: dm-hpa
spec:
  replicas: 1
  selector:
    matchLabels:
      k8s: dolphin
  template:
    metadata:
      labels:
        k8s: dolphin
    spec:
      containers:
      - name: c1
        image: centos:7
        command:
        - tail
        - -f
        - /etc/hosts
        resources:
          requests:
            cpu: "50m"
          limits:
            cpu: "150m"
 

3.2 编写hpa资源清单绑定deployment

[root@master hpa-demo]# cat hpa.yaml 
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-tools
spec:
  maxReplicas: 10 # 扩容上线
  minReplicas: 2  # 缩容下限
  scaleTargetRef: # 扩缩容的目标
    apiVersion: "apps/v1"
    kind: Deployment
    name: dm-hpa
  targetCPUUtilizationPercentage: 95 #cpu阈值达到95%开始扩缩容

 

3.3 创建上面两个资源

[root@master hpa-demo]# kubectl apply -f deployment.yaml 
[root@master hpa-demo]# kubectl apply -f hpa.yaml 
 

3.4 查看hpa资源

可以看到我们deployment.yaml文件中的副本是1,创建hap绑定资源后,会根据hpa的配置,这里配置了2个,所以就创建了2个pod资源。

四、压测测试


1,进入pod,安装stress工具


· 进入pod容器

[root@master hpa]# kubectl exec dm-hpa-5bb4dd448d-ks2rt -it -- sh

· 安装aili源和epel源

sh-4.2# yum -y install wget

sh-4.2# wget -O /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo

sh-4.2# wget -O /etc/yum.repos.d/epel.repo https://mirrors.aliyun.com/repo/epel-7.repo

· 安装压测工具

sh-4.2#  yum -y install stress

2,开始使用命令压测pod

sh-4.2# stress --cpu 8 --io 4 --vm 2 --vm-bytes 128M --timeout 20m

3,查看hpa资源的负载情况

[root@master ~]# kubectl get hpa -o wide

可以看到:

1,我们创建的deploy资源只有一个副本;

2,我们创建的hpa资源之后,设置最小值是2,最大值是10 ;

3,我们在查看pod,可以看见,pod变成了2个;

4,我们进入容器,开始压测,将负载压测到超过95%;

5,再次查看pod,发现变成了3个,自动创建了一个;

6,关闭压测,5分钟后,pod有回归到了2个;

7,至此,hpa的pod自动伸缩,测试完毕;

这篇关于kubernetes中的附件组件Metrics-server与hpa资源实现对pod的自动扩容和缩容的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932464

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略