深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现

本文主要是介绍深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现
MobileNetV4 - Universal Models for the Mobile Ecosystem
PDF: https://arxiv.org/pdf/2404.10518.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

专为移动设备设计的高效架构MobileNetV4(MNv4)核心在于引入了通用倒置瓶颈(UIB)搜索块和Mobile MQA注意力块,前者融合了多种技术,后者针对移动加速器优化,可大幅提升速度。同时采用了优化的神经架构搜索(NAS)方案。这一系列创新使得MNv4模型在多种设备上实现帕累托最优。此外,还引入了一种新的知识蒸馏技术,提高了模型的准确性。最终,MNv4-Hybrid-Large模型在ImageNet-1K上达到87%的准确率,同时在Pixel 8 EdgeTPU上的运行时间极短。

在这里插入图片描述

2 Universal Inverted Bottlenecks

通用倒瓶颈(UIB)块,其设计简洁而高效,如图所展示,它在传统的倒瓶颈块中巧妙地融入了两个可选的深度卷积(DW)操作。这两个DW分别置于扩展层之前以及扩展层和投影层之间,它们的存在与否是通过神经网络架构搜索(NAS)优化过程精心确定的,从而生成出性能卓越的全新架构。
在这里插入图片描述
尽管这种改动看似简单,但UIB块却成功地将多个现有的关键组件融为一体,包括经典的IB块、前沿的ConvNext块以及ViT中的FFN块。这种融合不仅保留了各组件的优势,还通过互补效应进一步提升了整体性能。

更值得一提的是,UIB还引入了一种革新的变体——额外的深度卷积IB(ExtraDW)块。这一创新举措为UIB块注入了新的活力,使其在保持高效的同时,进一步提升了模型的表达能力。

在网络的每个阶段,UIB都展现了出色的灵活性,以达成以下三个关键目标:

  • 即时实现空间和通道混合的权衡,优化模型的表达能力;
  • 按需扩大感受野,提升模型对上下文信息的捕获能力;
  • 最大化计算利用率,确保资源的高效利用。

3 Mobile MQA

专门为加速器优化的Mobile MQA注意力块,该块能够显著提升推理速度,达到超过39%的效率提升。

MQA
MQA通过共享键和值简化了多查询注意力机制。与MHSA相比,MQA在保持高质量的同时,实现了显著加速和参数减少。
在这里插入图片描述
Spatial Reduction Attention (SRA)
受到MQA非对称计算的启发,进一步将空间缩减注意力(SRA)融入优化后的MQA模块中,以降低键和值的分辨率,同时保持高分辨率的查询。此外使用步长为2的3x3深度卷积替代了AvgPooling,为模型容量的提升提供了一种高效且经济的方案。
在这里插入图片描述
通过引入非对称空间下采样,我们可以在保持极小精度损失(-0.06%)的同时,实现超过20%的效率提升。

Mobile MQA
在这里插入图片描述
其中 SR代表空间减少,即步长为2的深度卷积(DW),或者在未使用空间减少的情况下表示恒等函数。

4 Design of MNv4 Models

为了有效地实例化UIB块,作者采用了定制的TuNAS方法,该方法针对性能改进进行了优化。为克服TuNAS因参数共享而产生的偏见,作者实施了一个两阶段搜索策略。这一策略旨在解决UIB深度层与其他搜索选项之间参数数量差异的问题,确保搜索结果的公正性和有效性。

在搜索过程中,作者首先进行了粗粒度搜索,集中于确定最佳的滤波器大小,同时保持其他参数如扩展因子(设为默认值4)和深度可分核(使用3x3)不变。这一阶段的目的是快速筛选出可能的滤波器大小范围。

随后,基于粗粒度搜索的结果,作者进行了细粒度搜索。在这一阶段,作者进一步探索UIB的两个深度可分层的配置,包括它们的存在与否以及核大小(3x3或5x5)的选择。同时,扩展因子仍然保持为4,以控制变量并更精确地评估不同配置的性能。

通过这种两阶段的搜索策略,作者成功地确定了UIB块的最优配置,既考虑了性能又平衡了参数数量,为UIB的有效实例化提供了有力支持。

在这里插入图片描述
MNv4模型的架构细节:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 Results

ImageNet classification
在这里插入图片描述
COCO Object Detection
在这里插入图片描述

这篇关于深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931881

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、