mxnet - reshape操作完全解析(理解0,-1,-2,-3,-4)

2024-04-24 11:08

本文主要是介绍mxnet - reshape操作完全解析(理解0,-1,-2,-3,-4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一般来说,同一个操作,mxnet的ndarry和symbol都会有,分别对应动态图和静态图,比如reshape,可以调用 mx.nd.reshape,或者调用 mx.sym.reshape。下面对reshape这个操作进行解析,以mx.nd.reshape作为参考。

reshape的注释

reshape(data=None, shape=_Null, reverse=_Null, target_shape=_Null, keep_highest=_Null, out=None, name=None, **kwargs)Reshapes the input array... note:: ``Reshape`` is deprecated, use ``reshape``Given an array and a shape, this function returns a copy of the array in the new shape.The shape is a tuple of integers such as (2,3,4). The size of the new shape should be same as the size of the input array.Example::reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]]Some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}. The significance of each is explained below:- ``0``  copy this dimension from the input to the output shape.Example::- input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2)- input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4)- ``-1`` infers the dimension of the output shape by using the remainder of the input dimensionskeeping the size of the new array same as that of the input array.At most one dimension of shape can be -1.Example::- input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4)- input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8)- input shape = (2,3,4), shape=(-1,), output shape = (24,)- ``-2`` copy all/remainder of the input dimensions to the output shape.Example::- input shape = (2,3,4), shape = (-2,), output shape = (2,3,4)- input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4)- input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1)- ``-3`` use the product of two consecutive dimensions of the input shape as the output dimension.Example::- input shape = (2,3,4), shape = (-3,4), output shape = (6,4)- input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)- input shape = (2,3,4), shape = (0,-3), output shape = (2,12)- input shape = (2,3,4), shape = (-3,-2), output shape = (6,4)- ``-4`` split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1).Example::- input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4)- input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4)If the argument `reverse` is set to 1, then the special values are inferred from right to left.Example::- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5)- with reverse=1, output shape will be (50,4).

reshape传入的一个参数shape元组,元组中的数字可以非0正数,或者是0,-1,-2,-3,-4 这些奇怪的输入,下面讲讲这些参数的意义。

0

0起一个占位符的作用,默认从左到右进行占位(除非传入reverse=1,则从右到左),维持原数组在该位置的维度。

  • input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) # 中间维度维持不变
  • input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) # 后两个维度维持不变

-1

-1是最后进行推导的,先保证其他数字被照顾好之后,在reshape前后数组的size不变的约束下,推导出该位置的维度。通常来说,最多只有一个-1,但是在有 -4 的情况下,可以有两个 -1。

  • input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4)
  • input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8)
  • input shape = (2,3,4), shape=(-1,), output shape = (24,)

-2

-2和-1不同,-2可以包括多个维度。当其他位置都有对应的维度之后,-2就来容纳剩下的多个维度。

  • input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) # -2来容纳所有的维度
  • input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) # 2占据了一个维度,-2容纳剩下的(3,4)
  • input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1) # (1,1)是新增的两个维度,-2将(2,3,4)给容纳

-3

-3是将对应的两个维度合成一个维度,合成之后的维度值为之前两个维度的乘积。

  • input shape = (2,3,4), shape = (-3,4), output shape = (6,4)
  • input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)
  • input shape = (2,3,4), shape = (0,-3), output shape = (2,12)
  • input shape = (2,3,4), shape = (-3,-2), output shape = (6,4)

-4

-4和-3不同,-4是将一个维度拆分为两个,-4后面跟两个数字,代表拆分后的维度,其中可以有-1。

  • input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) # 将2拆分为1X2,剩下的3,4传递给-2
  • input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4) # 将3拆分为1X3,剩下的4传递给-2

reverse

If the argument `reverse` is set to 1, then the special values are inferred from right to left.Example::- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5)- with reverse=1, output shape will be (50,4).

一个例子:GN的实现

class GroupNorm(mx.gluon.HybridBlock):r"""Group Normalizationrefer to paper <Group Normalization>"""def __init__(self,in_channels,groups=32,gamma_initializer='ones',beta_initializer='zeros',**kwargs):super(GroupNorm, self).__init__(**kwargs)self.groups = min(in_channels, groups)assert in_channels % self.groups == 0, "Channel number should be divisible by groups."attrs = SpecialAttrScope.current.attrsself.mirroring_level = attrs.get('mirroring_level', 0)self.eps = attrs.get('gn_eps', 2e-5)self.use_fp16 = Falsewith self.name_scope():self.gamma = self.params.get('gamma',grad_req='write',shape=(1, in_channels, 1, 1),init=gamma_initializer,allow_deferred_init=True,differentiable=True)self.beta = self.params.get('beta',grad_req='write',shape=(1, in_channels, 1, 1),init=beta_initializer,allow_deferred_init=True,differentiable=True)def cast(self, dtype):self.use_fp16 = Falseif np.dtype(dtype).name == 'float16':self.use_fp16 = Truedtype = 'float32'super(GroupNorm, self).cast(dtype)def hybrid_forward(self, F, x, gamma, beta):_kwargs = {}if F is mx.symbol and self.mirroring_level >= 3:_kwargs['force_mirroring'] = 'True'if self.use_fp16:x = F.cast(data=x, dtype='float32')# (N, C, H, W) --> (N, G, C//G, H, Wx = F.reshape(x, shape=(-1, -4, self.groups, -1, -2))# y = (x - mean) / sqrt(var + eps)mean = F.mean(x, axis=(2, 3, 4), keepdims=True, **_kwargs)y = F.broadcast_sub(x, mean, **_kwargs)var = F.mean(y**2, axis=(2, 3, 4), keepdims=True, **_kwargs)y = F.broadcast_div(y, F.sqrt(var + self.eps))# (N, G, C//G, H, W --> (N, C, H, W)y = F.reshape(y, shape=(-1, -3, -2))y = F.broadcast_mul(y, gamma, **_kwargs)y = F.broadcast_add(y, beta, **_kwargs)if self.use_fp16:y = F.cast(data=y, dtype='float16')return y

这篇关于mxnet - reshape操作完全解析(理解0,-1,-2,-3,-4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931583

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编