多路径网格问题的解决策略:比较五种不同算法【python力扣62题】

本文主要是介绍多路径网格问题的解决策略:比较五种不同算法【python力扣62题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

一个机器人位于一个 m x n 网格的左上角(起始点在下图标记为 “Start” )。机器人每次只能向下或向右移动一步。机器人试图达到网格的右下角(在下图标记为 “Finish”)。问总共有多少条不同的路径?

输入格式
  • m:网格的行数。
  • n:网格的列数。
输出格式
  • 返回一个整数,表示所有可能的路径数量。

示例

示例 1
输入: m = 3, n = 7
输出: 28
示例 2
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

方法一:动态规划

解题步骤
  1. 初始化状态:创建一个二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的路径数量。
  2. 边界条件:网格的第一行和第一列的路径数都是 1,因为只有一种方式到达(要么一直向右,要么一直向下)。
  3. 状态转移:对于其他位置,路径数 dp[i][j] 等于从左边来的路径数加上从上面来的路径数,即 dp[i][j] = dp[i-1][j] + dp[i][j-1]
  4. 返回结果dp[m-1][n-1] 即为所求结果。
完整的规范代码
def uniquePaths(m, n):"""使用动态规划解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""dp = [[1] * n for _ in range(m)]for i in range(1, m):for j in range(1, n):dp[i][j] = dp[i-1][j] + dp[i][j-1]return dp[m-1][n-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),需要填充一个 mn 列的矩阵。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组作为动态规划表。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:利用一维数组 dp 来保存上一行的结果,降低空间复杂度。
  2. 迭代更新:对每一行使用相同的数组进行迭代更新,dp[j] 代表当前行第 j 列的路径数,更新公式仍为 dp[j] = dp[j] + dp[j-1]
  3. 初始化dp 的所有元素初始化为 1。
完整的规范代码
def uniquePaths(m, n):"""使用一维数组进行动态规划:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""dp = [1] * nfor i in range(1, m):for j in range(1, n):dp[j] += dp[j - 1]return dp[-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),需要迭代更新数组 m-1 次,每次迭代有 n-1 步。
  • 空间复杂度:(O(n)),使用了一个长度为 n 的一维数组。

方法三:数学组合方法

解题步骤
  1. 计算组合数:从起点到终点需要走 m+n-2 步,其中 m-1 步向下,n-1 步向右,问题转化为计算从 m+n-2 步中选择 m-1 步的组合数。
  2. 使用公式计算:使用组合数公式 C(k, n) = n! / (k! * (n-k)!) 来计算结果。
完整的规范代码
def uniquePaths(m, n):"""使用数学组合的方法解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""from math import factorialreturn factorial(m + n - 2) // (factorial(m - 1) * factorial(n - 1))# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m + n)),计算阶乘的时间复杂度。
  • 空间复杂度:(O(1)),除输入外不需要额外的存储空间。

方法四:深度优先搜索(DFS)

解题步骤
  1. DFS递归:从起点开始,递归地探索所有向右和向下的路径。
  2. 终止条件:当到达终点时,路径计数增加。
  3. 优化:使用记忆化存储已经计算过的位置的路径数,避免重复计算。
完整的规范代码
def uniquePaths(m, n):"""使用DFS和记忆化搜索解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""memo = {}def dfs(x, y):if (x, y) in memo:return memo[(x, y)]if x == m - 1 and y == n - 1:return 1paths = 0if x < m - 1:paths += dfs(x + 1, y)if y < n - 1:paths += dfs(x, y + 1)memo[(x, y)] = pathsreturn pathsreturn dfs(0, 0)# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),使用记忆化后避免了重复计算。
  • 空间复杂度:(O(m * n)),使用了额外的哈希表来存储中间结果。

方法五:广度优先搜索(BFS)

解题步骤
  1. 队列实现BFS:使用队列存储每个位置和到达该位置的路径数量。
  2. 逐层扩展:从起点开始,逐层扩展到可达的右侧和下侧格子。
  3. 累加路径数:到达终点的路径数累加。
完整的规范代码
from collections import dequedef uniquePaths(m, n):"""使用BFS解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""queue = deque([(0, 0)])paths = [[0] * n for _ in range(m)]paths[0][0] = 1while queue:x, y = queue.popleft()for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:if paths[nx][ny] == 0:queue.append((nx, ny))paths[nx][ny] += paths[x][y]return paths[m-1][n-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),每个节点入队出队一次。
  • 空间复杂度:(O(m * n)),存储每个位置的路径数及队列的空间需求。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 数学组合方法四: DFS方法五: BFS
时间复杂度(O(m * n))(O(m * n))(O(m + n))(O(m * n))(O(m * n))
空间复杂度(O(m * n))(O(n))(O(1))(O(m * n))(O(m * n))
优势直观,易理解空间效率高计算最快,非迭代灵活,适用于复杂边界层次清晰,适用于大规模
劣势空间占用高优化限于列对大数处理有限制时间空间成本高需要额外存储空间

应用示例

游戏开发中的路径发现
在策略游戏或迷宫游戏中,开发者可以利用这些算法来计算从起点到终点的所有可能路径,为游戏的AI决策提供支持,比如在自动生成的迷宫中计算最优路径或在战略游戏中规划单位的行动路线。这些算法提供了不同的效率和实现复杂度,使得开发者可以根据具体游戏场景和性能要求选择最适合的方法。

这篇关于多路径网格问题的解决策略:比较五种不同算法【python力扣62题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931256

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解