多路径网格问题的解决策略:比较五种不同算法【python力扣62题】

本文主要是介绍多路径网格问题的解决策略:比较五种不同算法【python力扣62题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

一个机器人位于一个 m x n 网格的左上角(起始点在下图标记为 “Start” )。机器人每次只能向下或向右移动一步。机器人试图达到网格的右下角(在下图标记为 “Finish”)。问总共有多少条不同的路径?

输入格式
  • m:网格的行数。
  • n:网格的列数。
输出格式
  • 返回一个整数,表示所有可能的路径数量。

示例

示例 1
输入: m = 3, n = 7
输出: 28
示例 2
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

方法一:动态规划

解题步骤
  1. 初始化状态:创建一个二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的路径数量。
  2. 边界条件:网格的第一行和第一列的路径数都是 1,因为只有一种方式到达(要么一直向右,要么一直向下)。
  3. 状态转移:对于其他位置,路径数 dp[i][j] 等于从左边来的路径数加上从上面来的路径数,即 dp[i][j] = dp[i-1][j] + dp[i][j-1]
  4. 返回结果dp[m-1][n-1] 即为所求结果。
完整的规范代码
def uniquePaths(m, n):"""使用动态规划解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""dp = [[1] * n for _ in range(m)]for i in range(1, m):for j in range(1, n):dp[i][j] = dp[i-1][j] + dp[i][j-1]return dp[m-1][n-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),需要填充一个 mn 列的矩阵。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组作为动态规划表。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:利用一维数组 dp 来保存上一行的结果,降低空间复杂度。
  2. 迭代更新:对每一行使用相同的数组进行迭代更新,dp[j] 代表当前行第 j 列的路径数,更新公式仍为 dp[j] = dp[j] + dp[j-1]
  3. 初始化dp 的所有元素初始化为 1。
完整的规范代码
def uniquePaths(m, n):"""使用一维数组进行动态规划:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""dp = [1] * nfor i in range(1, m):for j in range(1, n):dp[j] += dp[j - 1]return dp[-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),需要迭代更新数组 m-1 次,每次迭代有 n-1 步。
  • 空间复杂度:(O(n)),使用了一个长度为 n 的一维数组。

方法三:数学组合方法

解题步骤
  1. 计算组合数:从起点到终点需要走 m+n-2 步,其中 m-1 步向下,n-1 步向右,问题转化为计算从 m+n-2 步中选择 m-1 步的组合数。
  2. 使用公式计算:使用组合数公式 C(k, n) = n! / (k! * (n-k)!) 来计算结果。
完整的规范代码
def uniquePaths(m, n):"""使用数学组合的方法解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""from math import factorialreturn factorial(m + n - 2) // (factorial(m - 1) * factorial(n - 1))# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m + n)),计算阶乘的时间复杂度。
  • 空间复杂度:(O(1)),除输入外不需要额外的存储空间。

方法四:深度优先搜索(DFS)

解题步骤
  1. DFS递归:从起点开始,递归地探索所有向右和向下的路径。
  2. 终止条件:当到达终点时,路径计数增加。
  3. 优化:使用记忆化存储已经计算过的位置的路径数,避免重复计算。
完整的规范代码
def uniquePaths(m, n):"""使用DFS和记忆化搜索解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""memo = {}def dfs(x, y):if (x, y) in memo:return memo[(x, y)]if x == m - 1 and y == n - 1:return 1paths = 0if x < m - 1:paths += dfs(x + 1, y)if y < n - 1:paths += dfs(x, y + 1)memo[(x, y)] = pathsreturn pathsreturn dfs(0, 0)# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),使用记忆化后避免了重复计算。
  • 空间复杂度:(O(m * n)),使用了额外的哈希表来存储中间结果。

方法五:广度优先搜索(BFS)

解题步骤
  1. 队列实现BFS:使用队列存储每个位置和到达该位置的路径数量。
  2. 逐层扩展:从起点开始,逐层扩展到可达的右侧和下侧格子。
  3. 累加路径数:到达终点的路径数累加。
完整的规范代码
from collections import dequedef uniquePaths(m, n):"""使用BFS解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""queue = deque([(0, 0)])paths = [[0] * n for _ in range(m)]paths[0][0] = 1while queue:x, y = queue.popleft()for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:if paths[nx][ny] == 0:queue.append((nx, ny))paths[nx][ny] += paths[x][y]return paths[m-1][n-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),每个节点入队出队一次。
  • 空间复杂度:(O(m * n)),存储每个位置的路径数及队列的空间需求。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 数学组合方法四: DFS方法五: BFS
时间复杂度(O(m * n))(O(m * n))(O(m + n))(O(m * n))(O(m * n))
空间复杂度(O(m * n))(O(n))(O(1))(O(m * n))(O(m * n))
优势直观,易理解空间效率高计算最快,非迭代灵活,适用于复杂边界层次清晰,适用于大规模
劣势空间占用高优化限于列对大数处理有限制时间空间成本高需要额外存储空间

应用示例

游戏开发中的路径发现
在策略游戏或迷宫游戏中,开发者可以利用这些算法来计算从起点到终点的所有可能路径,为游戏的AI决策提供支持,比如在自动生成的迷宫中计算最优路径或在战略游戏中规划单位的行动路线。这些算法提供了不同的效率和实现复杂度,使得开发者可以根据具体游戏场景和性能要求选择最适合的方法。

这篇关于多路径网格问题的解决策略:比较五种不同算法【python力扣62题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931256

相关文章

Python跨文件实例化、跨文件调用及导入库示例代码

《Python跨文件实例化、跨文件调用及导入库示例代码》在Python开发过程中,经常会遇到需要在一个工程中调用另一个工程的Python文件的情况,:本文主要介绍Python跨文件实例化、跨文件调... 目录1. 核心对比表格(完整汇总)1.1 自定义模块跨文件调用汇总表1.2 第三方库使用汇总表1.3 导

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis