Python 决策树与贝叶斯相关理论知识和例题

2024-04-23 23:32

本文主要是介绍Python 决策树与贝叶斯相关理论知识和例题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • ID3算法
      • 例题
    • 贝叶斯
      • 例1
      • 例2
    • 朴素贝叶斯
      • 例题
    • 参考

信息有顺序排列,意思明确
信息无序,意思多
描述信息的混乱度用信息熵

ID3算法

将无序的数据变得更加有序。
信息熵计算公式
在这里插入图片描述
信息增益:
在这里插入图片描述
在决策树中,设D为用类别对训练元组的划分,则D的熵表示为:
在这里插入图片描述
训练元组D按照属性A进行划分,则A对D划分的期望信息为:
在这里插入图片描述
信息增益为两者的差值:
在这里插入图片描述

例题

现有如下表格数据,描述根据天气等情况决定是否出去打羽毛球的记录。

DayWeatherTemperatureHumidityWindPlay?
1SunnyHotHightWeakNo
2CloudyHotHightWeakYes
3SunnyMildNormalStrongYes
4CloudyMildHightStrongYes
5RainyMildHightStrongNo
6RainyCoolNormalStrongNo
7RainyMildHightWeakYes
8SunnyHotHightStrongNo
9CloudyHotNormalWeakYes
10RainyMildHightStrongNo

设We、T、H、Wi、D表示Weather、Temperature、Humidity、Wind、Play?(是否打羽毛球)。下面计算各属性的信息增益:

D:5个Yes 5个No
集合(1,…,10)的信息熵:
i n f o ( D ) = − 1 2 l o g 2 1 2 − 1 2 l o g 2 1 2 = 1 info(D) = -\frac{1}{2}log_2\frac{1}{2}-\frac{1}{2}log_2\frac{1}{2}=1 info(D)=21log22121log221=1
按照属性We进行划分D,则We对D划分的期望:
Sunny 0.3 ------> 1个Yes 2个No
Cloudy 0.3 ------> 3个Yes
Rainy 0.4 --------> 1个Yes 3个No
i n f o W e ( D ) = 0.3 ∗ ( − 1 3 l o g 2 1 3 − 2 3 l o g 2 2 3 ) + 0.3 ∗ ( − 1 ∗ l o g 2 1 ) + 0.4 ∗ ( − 1 4 l o g 2 1 4 − 3 4 l o g 2 3 4 ) = 0.6 info_We(D) = 0.3 * (-\frac{1}{3}log_2\frac{1}{3}-\frac{2}{3}log_2\frac{2}{3})+0.3*(-1*log_21)+0.4*(-\frac{1}{4}log_2\frac{1}{4}-\frac{3}{4}log_2\frac{3}{4})=0.6 infoWe(D)=0.3(31log23132log232)+0.3(1log21)+0.4(41log24143log243)=0.6
利用python计算结果:
在这里插入图片描述
We的信息增益:
g a i n ( W e ) = i n f o ( D ) − i n f o W e ( D ) = 1 − 0.6 = 0.4 gain(We)=info(D)-info_We(D)=1-0.6=0.4 gain(We)=info(D)infoWe(D)=10.6=0.4

同上得到T、H、Wi的信息增益:
i n f o T ( D ) = 0.4 ∗ ( − 2 4 l o g 2 2 4 − 2 4 l o g 2 2 4 ) + 0.5 ∗ ( − 3 5 l o g 2 3 5 − 2 5 l o g 2 2 5 ) + 0 = 0.885 info_T(D)=0.4*(-\frac{2}{4}log_2\frac{2}{4}-\frac{2}{4}log_2\frac{2}{4})+0.5*(-\frac{3}{5}log_2\frac{3}{5}-\frac{2}{5}log_2\frac{2}{5})+0=0.885 infoT(D)=0.4(42log24242log242)+0.5(53log25352log252)+0=0.885
i n f o H ( D ) = 0.7 ∗ ( − 3 7 l o g 2 3 7 − 4 7 l o g 2 4 7 ) + 0.3 ∗ ( − 2 3 l o g 2 2 3 − 1 3 l o g 2 1 3 ) = 0.956 info_H(D)=0.7*(-\frac{3}{7}log_2\frac{3}{7}-\frac{4}{7}log_2\frac{4}{7})+0.3*(-\frac{2}{3}log_2\frac{2}{3}-\frac{1}{3}log_2\frac{1}{3})=0.956 infoH(D)=0.7(73log27374log274)+0.3(32log23231log231)=0.956
i n f o W i ( D ) = 0.4 ∗ ( − 3 4 l o g 2 3 4 − 1 4 l o g 2 1 4 ) + 0.6 ∗ ( − 2 4 l o g 2 2 4 − 2 4 l o g 2 2 4 ) = 0.925 info_Wi(D)=0.4*(-\frac{3}{4}log_2\frac{3}{4}-\frac{1}{4}log_2\frac{1}{4})+0.6*(-\frac{2}{4}log_2\frac{2}{4}-\frac{2}{4}log_2\frac{2}{4})=0.925 infoWi(D)=0.4(43log24341log241)+0.6(42log24242log242)=0.925
g a i n ( T ) = i n f o ( D ) − i n f o T ( D ) = 1 − 0.885 = 0.115 gain(T)=info(D)-info_T(D)=1-0.885=0.115 gain(T)=info(D)infoT(D)=10.885=0.115
g a i n ( H ) = i n f o ( D ) − i n f o H ( D ) = 1 − 0.956 = 0.044 gain(H)=info(D)-info_H(D)=1-0.956=0.044 gain(H)=info(D)infoH(D)=10.956=0.044
g a i n ( W i ) = i n f o ( D ) − i n f o W i ( D ) = 1 − 0.925 = 0.075 gain(Wi)=info(D)-info_Wi(D)=1-0.925=0.075 gain(Wi)=info(D)infoWi(D)=10.925=0.075
综上得到Weather、Temperature、Humidity、Wind的信息增益分别为0.400、0.115、0.044和0.075。
因为Weather具有最大的信息增益,所以第一次分裂选择Weather为分裂属性,第二次分裂选择Temperature为分裂属性,第三次分裂选择Wind为分裂属性,分裂后的结果如下图所示:

Sunny
Cloud
Rainy
Hot
Mild
Mild
Cool
Strong
Weak
1Yes 2No
3Yes
1Yes 3No
2No
1Yes
1Yes 2No
1No
2No
1Yes
Weather

贝叶斯

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

例1

现分别有A、B两个容器,在容器A里分别有7个红球和3个白球,在容器B中有1个红球和9个红球。现已知从这两个容器里任意抽出了一个球,且是红球,问这个红球是来自容器A的概率是多少?
解:假设抽出红球的事件为B,选中容器A为事件A,则有:
P ( B ) = 8 20 , P ( A ) = 1 2 P(B)=\frac{8}{20},P(A)=\frac{1}{2} P(B)=208,P(A)=21
在 容 器 A 中 抽 出 红 球 的 概 率 : P ( B ∣ A ) = 7 10 在容器A中抽出红球的概率: P(B|A)=\frac{7}{10} AP(BA)=107
则 抽 出 红 球 来 自 A 容 器 的 概 率 : P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) = 7 10 ∗ 1 2 8 20 = 7 8 = 0.875 则抽出红球来自A容器的概率:P(A|B)=\frac{P(B|A)P(A)}{P(B)}=\frac{\frac{7}{10}*\frac{1}{2}}{\frac{8}{20}}=\frac{7}{8}=0.875 AP(AB)=P(B)P(BA)P(A)=20810721=87=0.875

例2

一座别墅在过去的20年里一共发生过2次被盗,别墅的主人有一条狗,狗平均每周晚上叫3次,在盗贼侵入时狗叫的概率被估计为0.9,问:在狗叫的时候发生盗贼入侵的概率是多少?
解:假设被盗的事件为A,狗叫的事件为B,则有:
P ( A ) = 2 20 ∗ 365 , P ( B ) = 3 7 , P ( B ∣ A ) = 0.9 P(A)=\frac{2}{20*365},P(B)=\frac{3}{7},P(B|A)=0.9 P(A)=203652,P(B)=73,P(BA)=0.9
则 在 狗 叫 的 时 候 盗 贼 入 侵 的 概 率 为 : P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) = 0.9 ∗ 2 20 ∗ 365 3 7 = 0.00058 则在狗叫的时候盗贼入侵的概率为:P(A|B)=\frac{P(B|A)P(A)}{P(B)}=\frac{0.9*\frac{2}{20*365}}{\frac{3}{7}}=0.00058 P(AB)=P(B)P(BA)P(A)=730.9203652=0.00058

朴素贝叶斯

朴素:独立性假设,假设各个特征之间是独立不相关的。

朴素贝叶斯的好处:在特征较多且数据少的情况下,还能计算出我们想要的结果。

例题

有一个如下表格:

帅?性格好?身高?上进?嫁与否
不好不上进不嫁
不帅上进不嫁
上进
不帅上进
不好上进不嫁
不帅不好上进不嫁
不上进
不帅上进
上进
不帅不好上进
不上进不嫁
不上进不嫁

问题:如果一对男女朋友,男生的四个特点分别是不帅,性格不好,身高矮,不上进,判断女生是嫁还是不嫁?

根据贝叶斯公式有:
P ( 嫁 | 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ) P(嫁|不帅、性格不好、身高矮、不上进) P()
= P ( 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ∣ 嫁 ) P ( 嫁 ) P ( 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ) =\frac{P(不帅、性格不好、身高矮、不上进|嫁)P(嫁)}{P(不帅、性格不好、身高矮、不上进)} =P()P()P()
给 得 数 据 无 法 计 算 P ( 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ∣ 嫁 ) 和 给得数据无法计算P(不帅、性格不好、身高矮、不上进|嫁)和 P()

P ( 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ) P(不帅、性格不好、身高矮、不上进) P()

这时朴素贝叶斯起到作用,由于朴素贝叶斯的独立性假设,假设各个特征之间是独立不相关的,所以上面的公式就可以转化为:
P ( 嫁 | 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ) = P ( 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ∣ 嫁 ) P ( 嫁 ) P ( 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ) P(嫁|不帅、性格不好、身高矮、不上进)=\frac{P(不帅、性格不好、身高矮、不上进|嫁)P(嫁)}{P(不帅、性格不好、身高矮、不上进)} P()=P()P()P()

= P ( 不 帅 | 嫁 ) ∗ P ( 性 格 不 好 ∣ 嫁 ) ∗ P ( 身 高 矮 ∣ 嫁 ) ∗ P ( 不 上 进 ∣ 嫁 ) ∗ P ( 嫁 ) P ( 不 帅 ) ∗ P ( 性 格 不 好 ) ∗ P ( 身 高 矮 ) ∗ P ( 不 上 进 ) =\frac{P(不帅|嫁)*P(性格不好|嫁)*P(身高矮|嫁)*P(不上进|嫁)*P(嫁)}{P(不帅)*P(性格不好)*P(身高矮)*P(不上进)} =P()P()P()P()P()P()P()P()P()

= 3 6 ∗ 1 6 ∗ 1 6 ∗ 1 6 ∗ 6 12 5 12 ∗ 4 12 ∗ 7 12 ∗ 4 12 = 0.043 =\frac{ \frac{3}{6} * \frac{1}{6} * \frac{1}{6} * \frac{1}{6} *\frac{6}{12} }{\frac{5}{12} * \frac{4}{12} * \frac{7}{12} * \frac{4}{12} }=0.043 =12512412712463616161126=0.043
同理计算:
P ( 不 嫁 | 不 帅 、 性 格 不 好 、 身 高 矮 、 不 上 进 ) = 0.964 P(不嫁|不帅、性格不好、身高矮、不上进)=0.964 P()=0.964
明显P(不嫁|不帅、性格不好、身高矮、不上进) > P(嫁|不帅、性格不好、身高矮、不上进),可以判断为不嫁。

参考

https://blog.csdn.net/amds123/article/details/70173402

这篇关于Python 决策树与贝叶斯相关理论知识和例题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930193

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: