自然语言处理: 第二十八章大模型基底之llama3

2024-04-23 23:20

本文主要是介绍自然语言处理: 第二十八章大模型基底之llama3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目地址: meta-llama/llama3: The official Meta Llama 3 GitHub site

前言

LLaMa系列一直是人们关注的焦点,Meta在4月18日发布了其最新大型语言模型 LLaMA 3。该模型将被集成到其虚拟助手Meta AI中。Meta自称8B和70B的LLaMA 3是当今 8B 和 70B 参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(对LLaMa系列有兴趣的可以看看我上一篇博客第二十一章大模型基底之llama1以及第二十二章大模型基底之llama2)

相比与LLaMa2, LLaMa3主要进行了下面几点突破:

  • 扩大词汇量: Llama 3 的词汇量从 Llama 128,256 的 2 个令牌增加到 32,000 个令牌。此增强功能支持更高效的输入和输出文本编码,并增强了其多语言功能。
  • 扩展上下文长度: Llama 3 模型提供 8,000 个令牌的上下文长度,是 Llama 4,090 支持的 2 个令牌的两倍。这种增加允许更广泛的内容处理,包括用户提示和模型响应。
  • 升级后的训练数据: Llama 3 的训练数据集比 Llama 2 大七倍,其中代码量多四倍。它包含超过 5% 的高质量非英语数据,涵盖 30 多种语言,这对于多语言应用支持至关重要。这些数据使用启发式和 NSFW 过滤器、语义重复数据删除和文本分类器等先进技术进行严格的质量控制。
  • 精细化指令调整和评估: 与 Llama 2 不同,Llama 3 采用先进的指令调优技术,包括监督微调 (SFT)、拒绝采样、近端策略优化 (PPO) 和直接策略优化 (DPO)。为了增强这一过程,引入了新的高质量人类评估集,由 1,800 个提示组成,涵盖建议、头脑风暴、分类、编码等不同用例,确保对模型功能的全面评估和微调。
  • 先进的人工智能安全: Llama 3 与 Llama 2 一样,采用了严格的安全措施,例如指令微调和全面的红队,以降低风险,特别是在网络安全和生物威胁等关键领域。为了支持这些努力,Meta 还推出了 Llama Guard 2,它是在 Llama 8 的 3B 版本上进行微调的。这个新模型增强了 羊驼卫士系列 通过对 LLM 输入和响应进行分类来识别潜在的不安全内容,使其成为生产环境的理想选择



一. 模型性能

目前发布的是早期版本,包括 8B 和 70B 大小两个不同版本。目前发布的LLaMA 3仅支持文本输入和输出,今年晚些会发布405B(也称400B)和多模态版本。
在这里插入图片描述


Llama 3 8B 在 MMLU、ARC、DROP 和 HumanEval 等 9 个基准测试中,优于具有相似参数数量的其他开源模型,例如 Mistral 的 Mistral 7B 和 Google 的 Gemma 7B。 Llama 3 70B 超越了 Claude 3 Sonnet,并可与 Google 的 Gemini 1.5 Pro 匹敌。 在目前的lmsys排名中排名第5,开源模型榜单排名第一。

在这里插入图片描述

LLaMa3 还与Claude Sonnet、Mistral Medium 和 GPT-3.5进行了人工评价上的对比,其性能如下:

在这里插入图片描述



二. 模型架构

根据官方文档介绍: LlaMa3 选择了相对标准的纯解码器转换器架构。与 LlaMa32 相比,进行了几项关键改进。

1)LLaMA 3具有 128K词汇量大小的Tokenizer,可以更有效的对文本进行编码,从而显着提高模型性能。

2)8B 和 70B 的LLaMA3都采用了分组查询注意力 (GQA)机制,以提高Inference速度。(LLaMA 2 70B也采用了GQA)

3)在8,192 个Token的较长序列上训练模型,使用掩码机制确保自注意力不会跨越文档边界。需要注意的是LLaMA 3采用了8K Token进行训练,并不代表只能生成8K Token以内文本。(LLaMA 2 为4096)



LlaMa3 和LLaMa2 同样选择了GQA 和 RoPE 这两个关键技术,有关于这两点技术的优点可以参考我笔者之前关于LLaMa2的介绍。

三. 模型训练

3.1 训练数据集

Llama 3 在超过 15T tokens上进行了预训练,这些tokens都是从公开来源收集的。我们的训练数据集比 Llama 2 使用的数据集大 7 倍,包含的代码是 Llama 2 的 4 倍。为了应对即将到来的多语言用例,Llama 3 预训练数据集的 5% 以上由涵盖 30 多种语言的高质量非英语数据组成。

Meta使用一系列数据清洗方法,包括使用启发式过滤器、NSFW 过滤器、语义重复数据删除方法和文本分类器来预测数据质量。其中LLaMA 2 为LLaMA 3 提供文本质量分类器的训练数据


3.2 预训练

为了在 Llama 3 模型中有效地利用预训练数据,Meta为下游基准评估制定了一系列详细的扩展法则。这些缩放定律使我们能够选择最佳的数据组合,并就如何最好地使用我们的训练计算做出明智的决策。重要的是,缩放定律允许我们在实际训练模型之前预测最大模型在关键任务上的性能(例如,在 HumanEval 基准测试中评估的代码生成——见上文)。这有助于我们确保最终模型在各种用例和功能中具有强大的性能。

举个例子: 虽然 8B 参数模型的 Chinchilla 最优训练计算量对应于 ~200B 标记,即使在模型使用两个数量级的数据进行训练后,模型性能仍在继续提高。我们的 8B 和 70B 参数模型在我们对高达 15T 的token进行训练后,继续对数线性改进。较大的模型可以与这些较小模型的性能相匹配,但训练计算较少,但通常首选较小的模型,因为它们在推理过程中效率更高。

在这里插入图片描述


LLaMA 3在H100-80GB 的GPGPU上训练(TDP 为 700W),8B和70B的模型训练累计使用了 770 万个 GPGPU 时长。训练过程使用了3种并行加速:数据并行、模型并行和管道并行。在 16000个 GPU 上进行训练时,可实现每个 GPU 超过 400 TFLOPS 的计算利用率。(需要注意H100的稠密算力约为2000TFLOPS)


Meta还开发了一种先进的训练堆栈,可以自动执行错误检测、处理和维护。改进了硬件可靠性和静默数据损坏检测机制,并开发了新的可扩展存储系统,以减少检查点和训练回滚的开销。


以上这些改进使总体有效培训时间超过 95%,训练效率比 Llama 2 提高了约3倍。



3.3 指令微调

为了在聊天用例中充分释放预训练模型的潜力,我们还对指令调整方法进行了创新。我们的后培训方法是监督微调 (SFT)、拒绝抽样、近端策略优化 (PPO) 和直接偏好优化 (DPO) 的组合。SFT 中使用的提示的质量以及 PPO 和 DPO 中使用的偏好排名对对齐模型的性能有很大影响。我们在模型质量方面的一些最大改进来自于仔细管理这些数据,并对人工注释者提供的注释执行多轮质量保证。

通过 PPO 和 DPO 从偏好排名中学习也大大提高了 Llama 3 在推理和编码任务上的表现。我们发现,如果你问一个模型一个它难以回答的推理问题,模型有时会产生正确的推理痕迹:模型知道如何产生正确的答案,但它不知道如何选择它。对偏好排名的训练使模型能够学习如何选择它。

在这里插入图片描述



总结:

LLaMa系列是Meta公司开源的最强模型,但是由于LLaMa3是近期发布的,具体的技术论文Meta还没有公开后续如果公开的话,技术细节会继续更新。 根据现有的资料,咱们可以发现:

  1. 高质量数据集以及数据量的重要性, 超过7倍的预训练数据
  2. 大模型标配 RoPE 以及 GQA 增加推理速度以及提高性能
  3. RLHF(对齐训练的重要性)

最后让我们期待以下Meta在年底发布的LLaMa3的后续版本。






参考资料:

陈巍:LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析) - 知乎 (zhihu.com)

揭晓 Meta Llama 3:大型语言模型的飞跃 - Unite.AI

Meta Llama 3 简介:迄今为止最有能力的公开产品LLM — Introducing Meta Llama 3: The most capable openly available LLM to date

这篇关于自然语言处理: 第二十八章大模型基底之llama3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930170

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、