数值分析复习:Richardson外推和Romberg算法

2024-04-23 19:44

本文主要是介绍数值分析复习:Richardson外推和Romberg算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • Richardson外推
    • Romberg(龙贝格)算法

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

本节继续考虑数值积分问题

Richardson外推

命题:复合梯形公式的另一形式
f ∈ C ∞ [ a , b ] f\in C^{\infty}[a,b] fC[a,b],记 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx ,将复合梯形公式记为
T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T(h)=2hi=0n1[f(xi)+f(xi+1)]

T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

其中 α l ( l = 1 , 2 , … ) \alpha_l(l=1,2,\dots) αl(l=1,2,) h h h 无关

证明
x i + 1 2 = x i + x i + 1 2 , i = 0 , 1 , … , n − 1 x_{i+\frac{1}{2}}=\frac{x_i+x_{i+1}}{2},i=0,1,\dots,n-1 xi+21=2xi+xi+1,i=0,1,,n1

考虑 f ( x ) f(x) f(x) x = x i + 1 2 x=x_{i+\frac{1}{2}} x=xi+21 处的Taylor展开公式
f ( x ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( x − x i + 1 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( x − x i + 1 2 ) 2 + ⋯ f(x)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(x-x_{i+\frac{1}{2}})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(x-x_{i+\frac{1}{2}})^2+\cdots f(x)=f(xi+21)+f(xi+21)(xxi+21)+2!f′′(xi+21)(xxi+21)2+

若对上述 Taylor 公式代入 x = x i , x = x i + 1 x=x_{i},x=x_{i+1} x=xi,x=xi+1,则得
f ( x i + 1 ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) h 2 + f ′ ′ ( x i + 1 2 ) 2 ! ( h 2 ) 2 + ⋯ f(x_{i+1})=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})\frac{h}{2}+\frac{f''(x_{i+\frac{1}{2}})}{2!}(\frac{h}{2})^2+\cdots f(xi+1)=f(xi+21)+f(xi+21)2h+2!f′′(xi+21)(2h)2+ f ( x i ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( − h 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( − h 2 ) 2 + ⋯ f(x_i)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(-\frac{h}{2})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(-\frac{h}{2})^2+\cdots f(xi)=f(xi+21)+f(xi+21)(2h)+2!f′′(xi+21)(2h)2+

两式加和,得到
f ( x i ) + f ( x i + 1 ) 2 = f ( x i + 1 2 ) + h 2 8 f ′ ′ ( x i + 1 2 ) + ⋯ \frac{f(x_i)+f(x_{i+1})}{2}=f(x_{i+\frac{1}{2}})+\frac{h^2}{8}f''(x_{i+\frac{1}{2}})+\cdots 2f(xi)+f(xi+1)=f(xi+21)+8h2f′′(xi+21)+

等式两端求和,乘以 h h h 得到
T ( h ) = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 8 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (1) T(h)=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}})+\frac{h^3}{8}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 1 T(h)=hi=0n1f(xi+21)+8h3i=0n1f′′(xi+21)+(1)

另一方面,对Taylor公式从 x i x_i xi x i + 1 x_{i+1} xi+1 进行积分,得到
∫ x i x i + 1 f ( x ) d x = h ⋅ f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) 2 [ ( h 2 ) 2 − ( − h 2 ) 2 ] + f ′ ′ ( x i + 1 2 ) 6 [ ( h 2 ) 3 − ( − h 2 ) 3 ] + ⋯ \int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\cdot f(x_{i+\frac{1}{2}})+\frac{f'(x_{i+\frac{1}{2}})}{2}[(\frac{h}{2})^2-(-\frac{h}{2})^2]+\frac{f''(x_{i+\frac{1}{2}})}{6}[(\frac{h}{2})^3-(-\frac{h}{2})^3]+\cdots xixi+1f(x)dx=hf(xi+21)+2f(xi+21)[(2h)2(2h)2]+6f′′(xi+21)[(2h)3(2h)3]+

等式两端求和得

I = ∑ i = 0 n − 1 ∫ x i x i + 1 f ( x ) d x = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (2) I=\sum\limits_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}}) +\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}}) +\cdots\tag 2 I=i=0n1xixi+1f(x)dx=hi=0n1f(xi+21)+24h3i=0n1f′′(xi+21)+(2)

结合(1)(2)式,可得
T ( h ) = I + h 3 12 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (3) T(h)=I+\frac{h^3}{12}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 3 T(h)=I+12h3i=0n1f′′(xi+21)+(3)

类似(2)式的推导,可得
∫ a b f ′ ′ ( x ) d x = h ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ \int_a^bf''(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots abf′′(x)dx=hi=0n1f′′(xi+21)+24h3i=0n1f(4)(xi+21)+

结合 ∫ a b f ′ ′ ( x ) d x = f ′ ( b ) − f ′ ( a ) \int_a^bf''(x)\mathrm{d}x=f'(b)-f'(a) abf′′(x)dx=f(b)f(a),可将(3)式化为
T ( h ) = I + α 1 h 2 + h 5 c 4 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ T(h)=I+\alpha_1h^2+h^5c_4\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots T(h)=I+α1h2+h5c4i=0n1f(4)(xi+21)+

重复上述操作,考虑 ∫ a b f ( 4 ) ( x ) d x \int_a^bf^{(4)}(x)\mathrm{d}x abf(4)(x)dx,消去 h 5 h^5 h5 的项,得到 h 4 h^4 h4 的项,继续重复操作,可得
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

定义:Richardson外推
从低阶精度格式的截断误差的渐近展开式出发,做简单线性计算从而得到高阶精度格式的方法称为Richardson外推

例:
考虑复合梯形公式 T ( h ) T(h) T(h) 满足的式子
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

此时截断误差量级为 O ( h 2 ) O(h^{2}) O(h2)

取步长为 h 2 \frac{h}{2} 2h,则有
T ( h 2 ) = I + α 1 h 2 4 + α 2 h 4 16 + ⋯ + α l h 2 l 2 2 l + ⋯ T(\frac{h}{2})=I+\alpha_1\frac{h^2}{4}+\alpha_2\frac{h^4}{16}+\cdots+\alpha_l\frac{h^{2l}}{2^{2l}}+\cdots T(2h)=I+α14h2+α216h4++αl22lh2l+

结合这两个式子,消去 h 2 h^{2} h2项,得
4 T ( h 2 ) − T ( h ) 3 = I − 1 4 α 2 h 4 + ⋯ + α l 3 ( 1 2 2 l − 1 ) h 2 l + ⋯ \frac{4T(\frac{h}{2})-T(h)}{3}=I-\frac{1}{4}\alpha_2h^4+\cdots+\frac{\alpha_l}{3}(\frac{1}{2^{2l}}-1)h^{2l}+\cdots 34T(2h)T(h)=I41α2h4++3αl(22l11)h2l+
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h),且
T 1 ( h ) = I + β 2 h 4 + β 3 h 6 + ⋯ + β l h 2 l + ⋯ T_1(h)=I+\beta_2h^4+\beta_3h^6+\cdots+\beta^lh^{2l}+\cdots T1(h)=I+β2h4+β3h6++βlh2l+
若用 T 1 ( h ) T_1(h) T1(h) 估计 I I I ,则截断误差量级提高到 O ( h 4 ) O(h^{4}) O(h4)
类似地,可继续做……

注:只要截断误差可表示为 h h h 的幂级数,均可使用 Richardson外推提高精度

Romberg(龙贝格)算法

在上述对复合梯形公式的截断误差进行Richardson外推的过程中,记复合梯形公式 T 0 ( h ) = T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T_0(h)=T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T0(h)=T(h)=2hi=0n1[f(xi)+f(xi+1)]

加速一次(即进行一次Richardson外推)后的估计式记为
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h)

记加速 n n n 次的估计式为 T n ( h ) T_n(h) Tn(h),则有递推式
T n ( h ) = 4 n 4 n − 1 T n − 1 ( h 2 ) − 1 4 n − 1 T n − 1 ( h ) T_n(h)=\frac{4^n}{4^n-1}T_{n-1}(\frac{h}{2})-\frac{1}{4^n-1}T_{n-1}(h) Tn(h)=4n14nTn1(2h)4n11Tn1(h)

若记 T m ( k ) = T m ( h 2 k ) , k = 0 , 1 , 2 , … T_m^{(k)}=T_m(\frac{h}{2^k}),k=0,1,2,\dots Tm(k)=Tm(2kh),k=0,1,2,,则有递推式
T n ( k ) = 4 n 4 n − 1 T n − 1 ( k + 1 ) − 1 4 n − 1 T n − 1 ( k ) T_n^{(k)}=\frac{4^n}{4^n-1}T_{n-1}^{(k+1)}-\frac{1}{4^n-1}T_{n-1}^{(k)} Tn(k)=4n14nTn1(k+1)4n11Tn1(k)

定理:
设被积函数 f ( x ) f(x) f(x) 充分光滑

  1. lim ⁡ k → ∞ T m ( k ) = I \lim\limits_{k\to\infty}T_m^{(k)}=I klimTm(k)=I
  2. lim ⁡ m → ∞ T m ( k ) = I \lim\limits_{m\to\infty}T_m^{(k)}=I mlimTm(k)=I

注:证明略去,第一个结论说明当节点数目无穷多时, T m ( k ) T_m^{(k)} Tm(k) 收敛于准确的积分值;第二个结论说明随着Richardson外推的进行, T m ( k ) T_m^{(k)} Tm(k) 也收敛于准确的积分值

上述递推式和收敛定理给出了如下的Romberg算法

定义:Romberg算法
对预先给定的精度 ε \varepsilon ε,求 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx 的近似值,算法如下:

初始取 k = 0 , m = 0 , h = b − a k=0,m=0,h=b-a k=0,m=0,h=ba

  1. 代入梯形公式,求 T 0 ( k ) ( k = 0 , 1 , 2 , … ) T_0^{(k)}(k=0,1,2,\dots) T0(k)(k=0,1,2,)
  2. 加速一次,由递推公式求 T 1 ( k ) T_1^{(k)} T1(k)
  3. 直至 ∣ T k ( 0 ) − T k − 1 ( 0 ) ∣ < ε |T_k^{(0)}-T_{k-1}^{(0)}|<\varepsilon Tk(0)Tk1(0)<ε,则取 T k ( 0 ) ≈ I T_{k}^{(0)}\approx I Tk(0)I

注:具体求解顺序如下表

在这里插入图片描述

参考书籍:《数值分析》李庆扬 王能超 易大义 编

这篇关于数值分析复习:Richardson外推和Romberg算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/929709

相关文章

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl