【智能算法】回溯搜索算法(BSA)原理及实现

2024-04-23 18:20

本文主要是介绍【智能算法】回溯搜索算法(BSA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2013年,P Civicioglu等人受到当前种群与历史种群之间的差分向量的引导启发,提出了回溯搜索算法(Backtracking Search Algorithm, BSA)。
在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

BSA通过当前种群与历史种群之间的差分向量的引导来执行搜索任务,主要分为三部分:筛选-I、交叉和变异和筛选-II

2.2算法过程

筛选-I

更新历史种群 Xoldt ,分为以下两步:
X o l d t = { X t , i f φ > θ X o l d t , o t h e r w i s e (1) \boldsymbol{X}_{\mathrm{old}}^t=\begin{cases}\boldsymbol{X}^t,&\mathrm{if~}\varphi{>}\theta\\\boldsymbol{X}_{\mathrm{old}}^t,&\mathrm{otherwise}&\end{cases}\tag{1} Xoldt={Xt,Xoldt,if φ>θotherwise(1)
其中, φ , θ \varphi,\theta φ,θ为随机数。接下来:
X o l d t = p e r m u t i n g ( X o l d t ) (2) \boldsymbol{X}_\mathrm{old}^t\mathrm{=permuting}{\left(\boldsymbol{X}_\mathrm{old}^t\right)}\tag{2} Xoldt=permuting(Xoldt)(2)
permuting 是一个随机改组函数,使得历史种群 Xold t 中包含的 N 个个体随机排序。

交叉和变异

变异操作由历史种群 Xold t 引导:
z i t = x i t + F × ( x o l d , i t − x i t ) (3) \boldsymbol{z}_i^t=\boldsymbol{x}_i^t+F\times\left(\boldsymbol{x}_{\mathrm{old},i}^t-\boldsymbol{x}_i^t\right)\tag{3} zit=xit+F×(xold,itxit)(3)
F 为缩放因子,表述为:
F = 3 × ξ (4) F{=}3{\times}\xi \tag{4} F=3×ξ(4)
交叉操作是由一个 N 行 D 列的二进制矩阵 M 来引导:
x i , j t + 1 = { x i , j t , i f M i , j = 1 z i , j t , i f M i , j = 0 (5) x_{i,j}^{t+1}=\begin{cases}x_{i,j}^t,\mathrm{if~}\boldsymbol{M}_{i,j}=1\\z_{i,j}^t,\mathrm{if~}\boldsymbol{M}_{i,j}=0\end{cases}\tag{5} xi,jt+1={xi,jt,if Mi,j=1zi,jt,if Mi,j=0(5)

筛选-II

为了加快收敛过程,执行:
x i t + 1 = { x i t , i f f ( x i t ) < f ( x i t + 1 ) x i t + 1 , o t h e r w i s e (6) \boldsymbol{x}_i^{t+1}=\begin{cases}\boldsymbol{x}_i^t,&\mathrm{if~}f(\boldsymbol{x}_i^t)<f(\boldsymbol{x}_i^{t+1})\\\boldsymbol{x}_i^{t+1},&\mathrm{otherwise}&\end{cases}\tag{6} xit+1={xit,xit+1,if f(xit)<f(xit+1)otherwise(6)

伪代码

在这里插入图片描述

3.结果展示

作者提供了拟合圆、图像聚类两个案例:

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and computation, 2013, 219(15): 8121-8144.

这篇关于【智能算法】回溯搜索算法(BSA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/929550

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont