python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】

本文主要是介绍python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给你一个正整数 n,生成一个包含 1n^2 所有元素的 n x n 正方形矩阵,数组的元素按螺旋顺序依次填充。

输入格式
  • n:一个正整数,表示矩阵的大小。
输出格式
  • 返回一个 n x n 的数组,按螺旋顺序填充从 1n^2 的整数。
示例 1
输入: n = 3
输出: [[1,2,3],[8,9,4],[7,6,5]]

方法一:模拟螺旋填充

解题步骤
  1. 初始化矩阵:创建一个 n x n 的矩阵,初始填充值为 0
  2. 螺旋遍历:定义四个方向,模拟螺旋遍历的过程,按顺序填入数字。
  3. 边界条件处理:在填充过程中,需要不断检查下一个位置是否超出边界或已被填充。
完整的规范代码
def generateMatrix(n):"""使用模拟螺旋遍历的方法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]  # right, down, left, uprow, col, di = 0, 0, 0for i in range(1, n*n + 1):matrix[row][col] = idr, dc = directions[di]if not (0 <= row + dr < n and 0 <= col + dc < n and matrix[row + dr][col + dc] == 0):di = (di + 1) % 4  # Change directiondr, dc = directions[di]row, col = row + dr, col + dcreturn matrix# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),其中 n 是矩阵的维度,需要填充 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵。

方法二:分层填充法

解题步骤
  1. 定义边界:设置上下左右四个边界,控制填充范围。
  2. 外层到内层填充:按层模拟填充过程,每完成一圈缩小填充范围。
  3. 逐层填充:按照右下左上的顺序逐层填充,每填完一全圈,四个边界向内缩进。
完整的规范代码
def generateMatrix(n):"""使用分层填充法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]left, right, top, bottom = 0, n-1, 0, n-1num = 1while left <= right and top <= bottom:for i in range(left, right + 1):matrix[top][i] = numnum += 1top += 1for i in range(top, bottom + 1):matrix[i][right] = numnum += 1right -= 1if top <= bottom:for i in range(right, left - 1, -1):matrix[bottom][i] = numnum += 1bottom -= 1if left <= right:for i in range(bottom, top - 1, -1):matrix[i][left] = numnum += 1left += 1return matrix# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),必须填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵。

方法三:递归填充

解题步骤
  1. 递归函数定义:定义一个递归函数用于填充每一层。
  2. 递归填充:从外层向内层递归填充,每次递归填充一圈。
  3. 终止条件:当填充完成或只剩下一行/一列时终止递归。
完整的规范代码
def generateMatrix(n):"""使用递归方法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]fill(matrix, 0, n, 1)return matrixdef fill(matrix, start, n, val):if n <= 0:returnif n == 1:matrix[start][start] = valreturnfor i in range(n - 1):matrix[start][start + i] = valval += 1for i in range(n - 1):matrix[start + i][start + n - 1] = valval += 1for i in range(n - 1):matrix[start + n - 1][start + n - 1 - i] = valval += 1for i in range(n - 1):matrix[start + n - 1 - i][start] = valval += 1fill(matrix, start + 1, n - 2, val)# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),需要填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵,加上递归栈的开销(最坏情况下为 (O(n)))。

方法四:迭代展开

解题步骤
  1. 初始化变量:定义矩阵、起始点、方向等变量。
  2. 迭代填充:通过迭代的方式填充矩阵,类似于方法一但避免了方向切换的复杂判断。
  3. 边界处理:在迭代中处理矩阵边界和已填充元素的情况。
完整的规范代码
def generateMatrix(n):"""使用迭代展开的方法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]x, y, dx, dy = 0, 0, 0, 1for i in range(1, n*n+1):matrix[x][y] = iif matrix[(x+dx)%n][(y+dy)%n]:dx, dy = dy, -dxx, y = x + dx, y + dyreturn matrix# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),需要填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵。

方法五:分治填充

解题步骤
  1. 定义填充函数:创建一个函数用于填充矩阵的一圈。
  2. 分治递归:递归地填充外圈后,对内层矩阵进行相同操作。
  3. 终止与初始化:当矩阵大小减小到1或0时终止递归。
完整的规范代码
def generateMatrix(n):"""使用分治填充法生成螺旋矩阵:param n: int, 矩阵的大小:return: List[List[int]], 螺旋矩阵"""matrix = [[0] * n for _ in range(n)]fill_layer(matrix, 0, n, 1)return matrixdef fill_layer(matrix, start, size, start_val):if size <= 0:returnif size == 1:matrix[start][start] = start_valreturn# Fill the perimeterfor i in range(size - 1):matrix[start][start+i] = start_valstart_val += 1for i in range(size - 1):matrix[start+i][start+size-1] = start_valstart_val += 1for i in range(size - 1):matrix[start+size-1][start+size-1-i] = start_valstart_val += 1for i in range(size - 1):matrix[start+size-1-i][start] = start_valstart_val += 1fill_layer(matrix, start+1, size-2, start_val)# 示例调用
print(generateMatrix(3))  # 输出: [[1, 2, 3], [8, 9, 4], [7, 6, 5]]
算法分析
  • 时间复杂度:(O(n^2)),需要填充所有 n^2 个元素。
  • 空间复杂度:(O(n^2)),用于存储生成的矩阵,递归栈深度依矩阵大小而定。

不同算法的优劣势对比

特征方法一: 模拟螺旋填充方法二: 分层填充法方法三: 递归填充方法四: 迭代展开方法五: 分治填充
时间复杂度(O(n^2))(O(n^2))(O(n^2))(O(n^2))(O(n^2))
空间复杂度(O(n^2))(O(n^2))(O(n^2))(O(n^2))(O(n^2))
优势直观易理解清晰结构化结构简单代码简洁递归清晰,易于理解
劣势稍微复杂的控制流多次循环递归深度问题边界处理复杂空间使用多,递归深度

应用示例

游戏开发
在游戏开发中,尤其是需要生成迷宫或特定图案的场景设计里,螺旋矩阵可以用于设计关卡的地图布局,例如生成螺旋迷宫地图,增加游戏的趣味性和挑战性。

通过上述方法,开发者可以选择最适合其应用场景的算法来实现高效、可靠的矩阵生成功能。

这篇关于python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928531

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义