python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】

2024-04-23 09:04

本文主要是介绍python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

  • “123”
  • “132”
  • “213”
  • “231”
  • “312”
  • “321”

给定 nk,返回第 k 个排列。

输入格式
  • n:一个整数,表示集合的大小。
  • k:一个整数,表示所求的排列序号。
输出格式
  • 返回一个字符串,表示第 k 个排列。
示例 1
输入: n = 3, k = 3
输出: "213"
示例 2
输入: n = 4, k = 9
输出: "2314"

方法一:数学 + 减治法

解题步骤
  1. 计算阶乘:首先计算所有小于等于 n 的数字的阶乘,这有助于后续确定每位数字的位置。
  2. 确定每位数字:从最高位开始,根据阶乘数确定每一位在剩余数字中的位置。
  3. 更新 k 值:更新 kk 减去前面已确定位的组合数。
  4. 重复选择数字:直到所有位置都填满。
完整的规范代码
def getPermutation(n, k):"""使用数学方法和减治法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""factorial = [1] * nfor i in range(1, n):factorial[i] = factorial[i - 1] * ik -= 1  # 转换成索引answer = []numbers = list(range(1, n + 1))for i in range(1, n + 1):index = k // factorial[n - i]answer.append(str(numbers.pop(index)))k %= factorial[n - i]return ''.join(answer)# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n^2)),计算阶乘数组为 (O(n)),确定每一位数字为 (O(n^2))(因为每次都要从列表中删除元素)。
  • 空间复杂度:(O(n)),存储阶乘数组和数字列表。

方法二:下一个排列法

解题步骤
  1. 生成最小排列:首先生成 [1,2,...,n]
  2. 应用 next permutation:应用 k-1 次“下一个排列”算法得到第 k 个排列。
完整的规范代码
def getPermutation(n, k):"""使用next permutation方法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""def next_permutation(nums):i = j = len(nums) - 1while i > 0 and nums[i-1] >= nums[i]:i -= 1if i == 0:   # nums are in descending ordernums.reverse()returnk = i - 1    # find the last "ascending" positionwhile nums[j] <= nums[k]:j -= 1nums[k], nums[j] = nums[j], nums[k]  l, r = k+1, len(nums)-1  # reverse the second partwhile l < r:nums[l],nums[r] = nums[r], nums[l]l +=1; r -= 1nums = list(range(1, n + 1))for _ in range(k - 1):next_permutation(nums)return ''.join(map(str, nums))# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n \times k)),每次生成下一个排列需要 (O(n)) 时间。
  • 空间复杂度:(O(n)),存储数字列表。

方法三:DFS回溯法

解题步骤
  1. DFS遍历:使用深度优先搜索遍历所有可能的排列。
  2. 计数并返回:当遍历到第 k 个排列时立即返回。
完整的规范代码
def getPermutation(n, k):"""使用DFS回溯法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""def dfs(path):nonlocal countif len(path) == n:count += 1if count == k:return pathreturnfor number in range(1, n+1):if number in path:continueres = dfs(path + [number])if res:return rescount = 0result = dfs([])return ''.join(map(str, result)) if result else ""# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n!)),理论上需要遍历所有排列。
  • 空间复杂度:(O(n)),递归深度为 n

不同算法的优劣势对比

在这里插入图片描述

应用示例详解:密码生成系统

场景描述

在密码生成和密码管理软件中,经常需要生成复杂且难以预测的密码来增加安全性。使用“第 k 个排列”算法可以在预定义字符集上生成随机但确定的密码,适用于需要高安全性的应用场景,如在线银行、军事通信等。

方法:数学+减治法

技术选择
选择方法一(数学+减治法),因为它可以直接计算出第 k 个排列而无需生成所有排列,提高了生成效率和保密性。

实现步骤

  1. 选择字符集:定义一个字符集,例如包含大小写字母和数字 [1-9, a-z, A-Z]
  2. 计算阶乘:预先计算出所有小于字符集大小的阶乘,用于后续计算排列位置。
  3. 确定每位字符:根据阶乘和 k 值,快速确定每一位置上的字符,直接计算出第 k 个排列。
  4. 生成密码:将计算出的排列作为密码,提供给用户或用于加密应用。

代码实现

def getPermutation(characters, k):"""使用数学方法和减治法基于给定字符集生成密码:param characters: str, 字符集:param k: int, 指定的排列序号:return: str, 生成的密码(排列)"""n = len(characters)factorial = [1] * (n + 1)for i in range(2, n + 1):factorial[i] = factorial[i - 1] * ik -= 1  # 转换为基于0的索引answer = []numbers = list(characters)for i in range(1, n + 1):index = k // factorial[n - i]answer.append(numbers.pop(index))k %= factorial[n - i]return ''.join(answer)# 示例调用
chars = "123456789ABCDEF"
k = 9432
print(getPermutation(chars, k))  # 输出: 第9432个排列
应用优势
  • 效率高:直接计算第 k 个排列,无需枚举所有可能,适合实时密码生成需求。
  • 安全性强:密码的生成基于数学计算,没有明显的规律,安全性高。
  • 适用性广:可根据不同的字符集和需求灵活定制密码生成策略。

总结

通过在密码生成系统中应用“第 k 个排列”算法,开发者可以提供一种高效且安全的方式来生成复杂密码。此外,该算法的高计算效率和确定性也使其成为理想的选择,用于需要快速生成大量密码或密钥的场合,比如动态令牌生成、临时密码分配等。此方法不仅优化了密码生成过程,也极大提高了密码管理系统的整体安全性。

这篇关于python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928355

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四: