python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】

2024-04-23 09:04

本文主要是介绍python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

  • “123”
  • “132”
  • “213”
  • “231”
  • “312”
  • “321”

给定 nk,返回第 k 个排列。

输入格式
  • n:一个整数,表示集合的大小。
  • k:一个整数,表示所求的排列序号。
输出格式
  • 返回一个字符串,表示第 k 个排列。
示例 1
输入: n = 3, k = 3
输出: "213"
示例 2
输入: n = 4, k = 9
输出: "2314"

方法一:数学 + 减治法

解题步骤
  1. 计算阶乘:首先计算所有小于等于 n 的数字的阶乘,这有助于后续确定每位数字的位置。
  2. 确定每位数字:从最高位开始,根据阶乘数确定每一位在剩余数字中的位置。
  3. 更新 k 值:更新 kk 减去前面已确定位的组合数。
  4. 重复选择数字:直到所有位置都填满。
完整的规范代码
def getPermutation(n, k):"""使用数学方法和减治法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""factorial = [1] * nfor i in range(1, n):factorial[i] = factorial[i - 1] * ik -= 1  # 转换成索引answer = []numbers = list(range(1, n + 1))for i in range(1, n + 1):index = k // factorial[n - i]answer.append(str(numbers.pop(index)))k %= factorial[n - i]return ''.join(answer)# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n^2)),计算阶乘数组为 (O(n)),确定每一位数字为 (O(n^2))(因为每次都要从列表中删除元素)。
  • 空间复杂度:(O(n)),存储阶乘数组和数字列表。

方法二:下一个排列法

解题步骤
  1. 生成最小排列:首先生成 [1,2,...,n]
  2. 应用 next permutation:应用 k-1 次“下一个排列”算法得到第 k 个排列。
完整的规范代码
def getPermutation(n, k):"""使用next permutation方法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""def next_permutation(nums):i = j = len(nums) - 1while i > 0 and nums[i-1] >= nums[i]:i -= 1if i == 0:   # nums are in descending ordernums.reverse()returnk = i - 1    # find the last "ascending" positionwhile nums[j] <= nums[k]:j -= 1nums[k], nums[j] = nums[j], nums[k]  l, r = k+1, len(nums)-1  # reverse the second partwhile l < r:nums[l],nums[r] = nums[r], nums[l]l +=1; r -= 1nums = list(range(1, n + 1))for _ in range(k - 1):next_permutation(nums)return ''.join(map(str, nums))# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n \times k)),每次生成下一个排列需要 (O(n)) 时间。
  • 空间复杂度:(O(n)),存储数字列表。

方法三:DFS回溯法

解题步骤
  1. DFS遍历:使用深度优先搜索遍历所有可能的排列。
  2. 计数并返回:当遍历到第 k 个排列时立即返回。
完整的规范代码
def getPermutation(n, k):"""使用DFS回溯法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""def dfs(path):nonlocal countif len(path) == n:count += 1if count == k:return pathreturnfor number in range(1, n+1):if number in path:continueres = dfs(path + [number])if res:return rescount = 0result = dfs([])return ''.join(map(str, result)) if result else ""# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n!)),理论上需要遍历所有排列。
  • 空间复杂度:(O(n)),递归深度为 n

不同算法的优劣势对比

在这里插入图片描述

应用示例详解:密码生成系统

场景描述

在密码生成和密码管理软件中,经常需要生成复杂且难以预测的密码来增加安全性。使用“第 k 个排列”算法可以在预定义字符集上生成随机但确定的密码,适用于需要高安全性的应用场景,如在线银行、军事通信等。

方法:数学+减治法

技术选择
选择方法一(数学+减治法),因为它可以直接计算出第 k 个排列而无需生成所有排列,提高了生成效率和保密性。

实现步骤

  1. 选择字符集:定义一个字符集,例如包含大小写字母和数字 [1-9, a-z, A-Z]
  2. 计算阶乘:预先计算出所有小于字符集大小的阶乘,用于后续计算排列位置。
  3. 确定每位字符:根据阶乘和 k 值,快速确定每一位置上的字符,直接计算出第 k 个排列。
  4. 生成密码:将计算出的排列作为密码,提供给用户或用于加密应用。

代码实现

def getPermutation(characters, k):"""使用数学方法和减治法基于给定字符集生成密码:param characters: str, 字符集:param k: int, 指定的排列序号:return: str, 生成的密码(排列)"""n = len(characters)factorial = [1] * (n + 1)for i in range(2, n + 1):factorial[i] = factorial[i - 1] * ik -= 1  # 转换为基于0的索引answer = []numbers = list(characters)for i in range(1, n + 1):index = k // factorial[n - i]answer.append(numbers.pop(index))k %= factorial[n - i]return ''.join(answer)# 示例调用
chars = "123456789ABCDEF"
k = 9432
print(getPermutation(chars, k))  # 输出: 第9432个排列
应用优势
  • 效率高:直接计算第 k 个排列,无需枚举所有可能,适合实时密码生成需求。
  • 安全性强:密码的生成基于数学计算,没有明显的规律,安全性高。
  • 适用性广:可根据不同的字符集和需求灵活定制密码生成策略。

总结

通过在密码生成系统中应用“第 k 个排列”算法,开发者可以提供一种高效且安全的方式来生成复杂密码。此外,该算法的高计算效率和确定性也使其成为理想的选择,用于需要快速生成大量密码或密钥的场合,比如动态令牌生成、临时密码分配等。此方法不仅优化了密码生成过程,也极大提高了密码管理系统的整体安全性。

这篇关于python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928355

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指